L(s) = 1 | + (26.6 + 36.6i)2-s + (−215. − 662. i)3-s + (−632. + 1.94e3i)4-s + (−6.73e3 − 4.88e3i)5-s + (1.85e4 − 2.54e4i)6-s + (1.27e5 + 4.14e4i)7-s + (−8.81e4 + 2.86e4i)8-s + (3.75e4 − 2.72e4i)9-s − 3.76e5i·10-s + (−1.74e6 + 2.99e5i)11-s + 1.42e6·12-s + (−3.66e6 − 5.03e6i)13-s + (1.87e6 + 5.76e6i)14-s + (−1.79e6 + 5.51e6i)15-s + (−3.39e6 − 2.46e6i)16-s + (−2.22e7 + 3.06e7i)17-s + ⋯ |
L(s) = 1 | + (0.415 + 0.572i)2-s + (−0.295 − 0.908i)3-s + (−0.154 + 0.475i)4-s + (−0.430 − 0.312i)5-s + (0.397 − 0.546i)6-s + (1.08 + 0.351i)7-s + (−0.336 + 0.109i)8-s + (0.0706 − 0.0513i)9-s − 0.376i·10-s + (−0.985 + 0.169i)11-s + 0.477·12-s + (−0.758 − 1.04i)13-s + (0.248 + 0.765i)14-s + (−0.157 + 0.483i)15-s + (−0.202 − 0.146i)16-s + (−0.921 + 1.26i)17-s + ⋯ |
Λ(s)=(=(22s/2ΓC(s)L(s)(−0.971+0.237i)Λ(13−s)
Λ(s)=(=(22s/2ΓC(s+6)L(s)(−0.971+0.237i)Λ(1−s)
Degree: |
2 |
Conductor: |
22
= 2⋅11
|
Sign: |
−0.971+0.237i
|
Analytic conductor: |
20.1078 |
Root analytic conductor: |
4.48417 |
Motivic weight: |
12 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ22(19,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 22, ( :6), −0.971+0.237i)
|
Particular Values
L(213) |
≈ |
0.0299987−0.249243i |
L(21) |
≈ |
0.0299987−0.249243i |
L(7) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−26.6−36.6i)T |
| 11 | 1+(1.74e6−2.99e5i)T |
good | 3 | 1+(215.+662.i)T+(−4.29e5+3.12e5i)T2 |
| 5 | 1+(6.73e3+4.88e3i)T+(7.54e7+2.32e8i)T2 |
| 7 | 1+(−1.27e5−4.14e4i)T+(1.11e10+8.13e9i)T2 |
| 13 | 1+(3.66e6+5.03e6i)T+(−7.19e12+2.21e13i)T2 |
| 17 | 1+(2.22e7−3.06e7i)T+(−1.80e14−5.54e14i)T2 |
| 19 | 1+(6.98e7−2.26e7i)T+(1.79e15−1.30e15i)T2 |
| 23 | 1−7.00e7T+2.19e16T2 |
| 29 | 1+(4.18e8+1.36e8i)T+(2.86e17+2.07e17i)T2 |
| 31 | 1+(6.96e8−5.06e8i)T+(2.43e17−7.49e17i)T2 |
| 37 | 1+(3.07e8−9.46e8i)T+(−5.32e18−3.86e18i)T2 |
| 41 | 1+(−8.21e9+2.66e9i)T+(1.82e19−1.32e19i)T2 |
| 43 | 1+2.31e9iT−3.99e19T2 |
| 47 | 1+(−3.00e9−9.25e9i)T+(−9.40e19+6.82e19i)T2 |
| 53 | 1+(1.62e10−1.17e10i)T+(1.51e20−4.67e20i)T2 |
| 59 | 1+(−1.78e10+5.49e10i)T+(−1.43e21−1.04e21i)T2 |
| 61 | 1+(2.93e10−4.04e10i)T+(−8.20e20−2.52e21i)T2 |
| 67 | 1+5.55e10T+8.18e21T2 |
| 71 | 1+(−6.21e10−4.51e10i)T+(5.07e21+1.56e22i)T2 |
| 73 | 1+(−3.46e10−1.12e10i)T+(1.85e22+1.34e22i)T2 |
| 79 | 1+(1.91e11+2.64e11i)T+(−1.82e22+5.61e22i)T2 |
| 83 | 1+(−2.22e11+3.06e11i)T+(−3.30e22−1.01e23i)T2 |
| 89 | 1+3.32e11T+2.46e23T2 |
| 97 | 1+(7.24e10−5.26e10i)T+(2.14e23−6.59e23i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.73545126755452283553350417096, −12.91330956298723200681030539424, −12.45919093223207520641765086189, −10.81659853054700554263124122021, −8.373567103378181406416518358206, −7.53037341247914220783407400975, −5.89798991153869137380568061471, −4.46610136752527754743884550922, −2.04292902647804332503375069262, −0.07626840740642007664936533243,
2.22841389889385031054889336502, 4.22934567734554247751284294742, 5.01743199784209421607402463268, 7.35450807502403691337769147739, 9.317775226578844531139052473091, 10.90247720948665435994881864732, 11.27838525985393666641114105063, 13.13581696834715465573460493156, 14.55971766954604131303926006942, 15.50481964756676447582829724144