L(s) = 1 | + (19.7 + 60.8i)2-s + (−306. − 223. i)3-s + (−3.31e3 + 2.40e3i)4-s + (−5.17e3 + 1.59e4i)5-s + (7.50e3 − 2.30e4i)6-s + (2.91e5 − 2.11e5i)7-s + (−2.12e5 − 1.54e5i)8-s + (−4.48e5 − 1.37e6i)9-s − 1.07e6·10-s + (2.53e6 + 5.29e6i)11-s + 1.55e6·12-s + (−2.24e6 − 6.91e6i)13-s + (1.86e7 + 1.35e7i)14-s + (5.14e6 − 3.73e6i)15-s + (5.18e6 − 1.59e7i)16-s + (7.19e6 − 2.21e7i)17-s + ⋯ |
L(s) = 1 | + (0.218 + 0.672i)2-s + (−0.243 − 0.176i)3-s + (−0.404 + 0.293i)4-s + (−0.148 + 0.456i)5-s + (0.0656 − 0.202i)6-s + (0.936 − 0.680i)7-s + (−0.286 − 0.207i)8-s + (−0.281 − 0.865i)9-s − 0.339·10-s + (0.431 + 0.901i)11-s + 0.150·12-s + (−0.129 − 0.397i)13-s + (0.662 + 0.481i)14-s + (0.116 − 0.0847i)15-s + (0.0772 − 0.237i)16-s + (0.0723 − 0.222i)17-s + ⋯ |
Λ(s)=(=(22s/2ΓC(s)L(s)(0.515−0.856i)Λ(14−s)
Λ(s)=(=(22s/2ΓC(s+13/2)L(s)(0.515−0.856i)Λ(1−s)
Degree: |
2 |
Conductor: |
22
= 2⋅11
|
Sign: |
0.515−0.856i
|
Analytic conductor: |
23.5908 |
Root analytic conductor: |
4.85703 |
Motivic weight: |
13 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ22(5,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 22, ( :13/2), 0.515−0.856i)
|
Particular Values
L(7) |
≈ |
2.063294073 |
L(21) |
≈ |
2.063294073 |
L(215) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−19.7−60.8i)T |
| 11 | 1+(−2.53e6−5.29e6i)T |
good | 3 | 1+(306.+223.i)T+(4.92e5+1.51e6i)T2 |
| 5 | 1+(5.17e3−1.59e4i)T+(−9.87e8−7.17e8i)T2 |
| 7 | 1+(−2.91e5+2.11e5i)T+(2.99e10−9.21e10i)T2 |
| 13 | 1+(2.24e6+6.91e6i)T+(−2.45e14+1.78e14i)T2 |
| 17 | 1+(−7.19e6+2.21e7i)T+(−8.01e15−5.82e15i)T2 |
| 19 | 1+(−3.25e8−2.36e8i)T+(1.29e16+3.99e16i)T2 |
| 23 | 1−2.99e7T+5.04e17T2 |
| 29 | 1+(1.85e9−1.34e9i)T+(3.17e18−9.75e18i)T2 |
| 31 | 1+(−2.30e9−7.08e9i)T+(−1.97e19+1.43e19i)T2 |
| 37 | 1+(−1.67e10+1.21e10i)T+(7.52e19−2.31e20i)T2 |
| 41 | 1+(−3.86e10−2.80e10i)T+(2.85e20+8.79e20i)T2 |
| 43 | 1−8.85e9T+1.71e21T2 |
| 47 | 1+(9.63e10+7.00e10i)T+(1.68e21+5.19e21i)T2 |
| 53 | 1+(5.59e10+1.72e11i)T+(−2.10e22+1.53e22i)T2 |
| 59 | 1+(−4.29e11+3.11e11i)T+(3.24e22−9.98e22i)T2 |
| 61 | 1+(2.13e10−6.57e10i)T+(−1.30e23−9.51e22i)T2 |
| 67 | 1−6.63e11T+5.48e23T2 |
| 71 | 1+(−4.27e11+1.31e12i)T+(−9.42e23−6.84e23i)T2 |
| 73 | 1+(−5.16e11+3.74e11i)T+(5.16e23−1.59e24i)T2 |
| 79 | 1+(−9.73e11−2.99e12i)T+(−3.77e24+2.74e24i)T2 |
| 83 | 1+(9.67e10−2.97e11i)T+(−7.17e24−5.21e24i)T2 |
| 89 | 1+1.99e11T+2.19e25T2 |
| 97 | 1+(−1.77e12−5.47e12i)T+(−5.44e25+3.95e25i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.80636144111332575292303666812, −14.29225249099505968915300235757, −12.54499197932299064111941793042, −11.33039803122691573836915172633, −9.644860479923519511759146539855, −7.83305585812215289309824635657, −6.80795869623720756254488245886, −5.16108809553090833352078999671, −3.55258055173388150933075859145, −1.10335669890447671765798680410,
0.906284489657855779926924369229, 2.53880569585503031971410334308, 4.52324291826598085428187647812, 5.62901622952078490082015341445, 8.072746160415981620693785629952, 9.329738336201670698760203963774, 11.17191135827224048227350032614, 11.70757503872196432747286328641, 13.35606783644232897747500943013, 14.46464501207019662475115631103