L(s) = 1 | + 6·4-s − 8·5-s + 2·9-s + 19·16-s − 48·20-s + 36·25-s + 12·36-s + 4·37-s − 16·45-s − 34·49-s − 36·53-s + 36·64-s − 152·80-s + 19·81-s − 28·89-s + 16·97-s + 216·100-s + 80·113-s − 120·125-s + 127-s + 131-s + 137-s + 139-s + 38·144-s + 24·148-s + 149-s + 151-s + ⋯ |
L(s) = 1 | + 3·4-s − 3.57·5-s + 2/3·9-s + 19/4·16-s − 10.7·20-s + 36/5·25-s + 2·36-s + 0.657·37-s − 2.38·45-s − 4.85·49-s − 4.94·53-s + 9/2·64-s − 16.9·80-s + 19/9·81-s − 2.96·89-s + 1.62·97-s + 21.5·100-s + 7.52·113-s − 10.7·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 19/6·144-s + 1.97·148-s + 0.0819·149-s + 0.0813·151-s + ⋯ |
Λ(s)=(=((216⋅58⋅118)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((216⋅58⋅118)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.573748054 |
L(21) |
≈ |
1.573748054 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | (1−3T2+p2T4)2 |
| 5 | (1+T)8 |
| 11 | 1−178T4+p4T8 |
good | 3 | (1−T2−8T4−p2T6+p4T8)2 |
| 7 | (1+17T2+144T4+17p2T6+p4T8)2 |
| 13 | (1−22T2+p2T4)4 |
| 17 | (1−15T2+608T4−15p2T6+p4T8)2 |
| 19 | (1+5T2+492T4+5p2T6+p4T8)2 |
| 23 | (1−48T2+1214T4−48p2T6+p4T8)2 |
| 29 | (1−51T2+1676T4−51p2T6+p4T8)2 |
| 31 | (1−113T2+5088T4−113p2T6+p4T8)2 |
| 37 | (1−T+48T2−pT3+p2T4)4 |
| 41 | (1−10T+pT2)4(1+10T+pT2)4 |
| 43 | (1+128T2+7374T4+128p2T6+p4T8)2 |
| 47 | (1−144T2+9182T4−144p2T6+p4T8)2 |
| 53 | (1+9T+100T2+9pT3+p2T4)4 |
| 59 | (1−80T2+4782T4−80p2T6+p4T8)2 |
| 61 | (1−107T2+5868T4−107p2T6+p4T8)2 |
| 67 | (1−74T2+p2T4)4 |
| 71 | (1−185T2+16512T4−185p2T6+p4T8)2 |
| 73 | (1−142T2+p2T4)4 |
| 79 | (1+140T2+10662T4+140p2T6+p4T8)2 |
| 83 | (1+106T2+p2T4)4 |
| 89 | (1+7T+164T2+7pT3+p2T4)4 |
| 97 | (1−2T+pT2)8 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.73812589338021216771892245360, −5.41627949932870405380881235136, −5.06489199016063625816894201352, −5.04850661913630374715683966257, −4.92241595564743753445556218881, −4.75649386291839883312593412153, −4.72864526896438551904392995787, −4.40838586209154441095090518196, −4.23848750455116035376804384910, −4.17876226032412850490795430184, −4.01466500307527323203232538551, −3.54531298097811069189650776905, −3.49951351285668897638779749280, −3.44574749391459005168799810958, −3.13452885624797282855874462960, −3.11865084233265932113536114836, −3.04524733287524019968809747837, −2.74383231450438970825911793480, −2.56109076747685554927755538732, −2.11771274823639781110416119215, −1.70978324994814382881067450747, −1.70850946274499909800647373114, −1.68299960504030342333200891621, −1.03754198720654088484727612719, −0.43139058921706822383338988331,
0.43139058921706822383338988331, 1.03754198720654088484727612719, 1.68299960504030342333200891621, 1.70850946274499909800647373114, 1.70978324994814382881067450747, 2.11771274823639781110416119215, 2.56109076747685554927755538732, 2.74383231450438970825911793480, 3.04524733287524019968809747837, 3.11865084233265932113536114836, 3.13452885624797282855874462960, 3.44574749391459005168799810958, 3.49951351285668897638779749280, 3.54531298097811069189650776905, 4.01466500307527323203232538551, 4.17876226032412850490795430184, 4.23848750455116035376804384910, 4.40838586209154441095090518196, 4.72864526896438551904392995787, 4.75649386291839883312593412153, 4.92241595564743753445556218881, 5.04850661913630374715683966257, 5.06489199016063625816894201352, 5.41627949932870405380881235136, 5.73812589338021216771892245360
Plot not available for L-functions of degree greater than 10.