L(s) = 1 | + (1.39 − 0.249i)2-s − 2.27i·3-s + (1.87 − 0.695i)4-s + 5-s + (−0.567 − 3.16i)6-s − 3.82·7-s + (2.43 − 1.43i)8-s − 2.15·9-s + (1.39 − 0.249i)10-s + (−0.302 + 3.30i)11-s + (−1.57 − 4.25i)12-s + 4.63i·13-s + (−5.32 + 0.956i)14-s − 2.27i·15-s + (3.03 − 2.60i)16-s − 0.686i·17-s + ⋯ |
L(s) = 1 | + (0.984 − 0.176i)2-s − 1.31i·3-s + (0.937 − 0.347i)4-s + 0.447·5-s + (−0.231 − 1.29i)6-s − 1.44·7-s + (0.861 − 0.507i)8-s − 0.719·9-s + (0.440 − 0.0789i)10-s + (−0.0911 + 0.995i)11-s + (−0.455 − 1.22i)12-s + 1.28i·13-s + (−1.42 + 0.255i)14-s − 0.586i·15-s + (0.758 − 0.651i)16-s − 0.166i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.260 + 0.965i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.260 + 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.63384 - 1.25120i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.63384 - 1.25120i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.39 + 0.249i)T \) |
| 5 | \( 1 - T \) |
| 11 | \( 1 + (0.302 - 3.30i)T \) |
good | 3 | \( 1 + 2.27iT - 3T^{2} \) |
| 7 | \( 1 + 3.82T + 7T^{2} \) |
| 13 | \( 1 - 4.63iT - 13T^{2} \) |
| 17 | \( 1 + 0.686iT - 17T^{2} \) |
| 19 | \( 1 - 3.82T + 19T^{2} \) |
| 23 | \( 1 + 4.18iT - 23T^{2} \) |
| 29 | \( 1 + 3.95iT - 29T^{2} \) |
| 31 | \( 1 - 4.69iT - 31T^{2} \) |
| 37 | \( 1 + 6.34T + 37T^{2} \) |
| 41 | \( 1 - 6.74iT - 41T^{2} \) |
| 43 | \( 1 + 2.87T + 43T^{2} \) |
| 47 | \( 1 - 12.5iT - 47T^{2} \) |
| 53 | \( 1 + 8.65T + 53T^{2} \) |
| 59 | \( 1 - 1.76iT - 59T^{2} \) |
| 61 | \( 1 + 5.32iT - 61T^{2} \) |
| 67 | \( 1 + 4.48iT - 67T^{2} \) |
| 71 | \( 1 - 0.868iT - 71T^{2} \) |
| 73 | \( 1 + 16.1iT - 73T^{2} \) |
| 79 | \( 1 + 16.9T + 79T^{2} \) |
| 83 | \( 1 + 4.78T + 83T^{2} \) |
| 89 | \( 1 - 5.47T + 89T^{2} \) |
| 97 | \( 1 - 17.6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.43648395423572870459701004852, −11.64103331420624860659926810317, −10.18866428166458405848414956999, −9.357070496291576976293074444836, −7.53495975805134847675627405358, −6.67996324522392562247381617590, −6.24006426723530290361926395734, −4.63994657498015817772683186238, −2.99201337623790660238674931330, −1.74571274180383667961085625767,
3.12752877759680587859872222956, 3.63202919247051812961959745631, 5.29341600032119601072063398567, 5.84202998758659684397507809962, 7.16873502632218701495343664776, 8.699964952455338479617100883210, 9.910224919446315437882780054099, 10.42894991252824074832968314788, 11.49776970444422632388312337601, 12.77305226823515875891606318456