L(s) = 1 | + (1.39 − 0.249i)2-s − 2.27i·3-s + (1.87 − 0.695i)4-s + 5-s + (−0.567 − 3.16i)6-s − 3.82·7-s + (2.43 − 1.43i)8-s − 2.15·9-s + (1.39 − 0.249i)10-s + (−0.302 + 3.30i)11-s + (−1.57 − 4.25i)12-s + 4.63i·13-s + (−5.32 + 0.956i)14-s − 2.27i·15-s + (3.03 − 2.60i)16-s − 0.686i·17-s + ⋯ |
L(s) = 1 | + (0.984 − 0.176i)2-s − 1.31i·3-s + (0.937 − 0.347i)4-s + 0.447·5-s + (−0.231 − 1.29i)6-s − 1.44·7-s + (0.861 − 0.507i)8-s − 0.719·9-s + (0.440 − 0.0789i)10-s + (−0.0911 + 0.995i)11-s + (−0.455 − 1.22i)12-s + 1.28i·13-s + (−1.42 + 0.255i)14-s − 0.586i·15-s + (0.758 − 0.651i)16-s − 0.166i·17-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(0.260+0.965i)Λ(2−s)
Λ(s)=(=(220s/2ΓC(s+1/2)L(s)(0.260+0.965i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
0.260+0.965i
|
Analytic conductor: |
1.75670 |
Root analytic conductor: |
1.32540 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(131,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :1/2), 0.260+0.965i)
|
Particular Values
L(1) |
≈ |
1.63384−1.25120i |
L(21) |
≈ |
1.63384−1.25120i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.39+0.249i)T |
| 5 | 1−T |
| 11 | 1+(0.302−3.30i)T |
good | 3 | 1+2.27iT−3T2 |
| 7 | 1+3.82T+7T2 |
| 13 | 1−4.63iT−13T2 |
| 17 | 1+0.686iT−17T2 |
| 19 | 1−3.82T+19T2 |
| 23 | 1+4.18iT−23T2 |
| 29 | 1+3.95iT−29T2 |
| 31 | 1−4.69iT−31T2 |
| 37 | 1+6.34T+37T2 |
| 41 | 1−6.74iT−41T2 |
| 43 | 1+2.87T+43T2 |
| 47 | 1−12.5iT−47T2 |
| 53 | 1+8.65T+53T2 |
| 59 | 1−1.76iT−59T2 |
| 61 | 1+5.32iT−61T2 |
| 67 | 1+4.48iT−67T2 |
| 71 | 1−0.868iT−71T2 |
| 73 | 1+16.1iT−73T2 |
| 79 | 1+16.9T+79T2 |
| 83 | 1+4.78T+83T2 |
| 89 | 1−5.47T+89T2 |
| 97 | 1−17.6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.43648395423572870459701004852, −11.64103331420624860659926810317, −10.18866428166458405848414956999, −9.357070496291576976293074444836, −7.53495975805134847675627405358, −6.67996324522392562247381617590, −6.24006426723530290361926395734, −4.63994657498015817772683186238, −2.99201337623790660238674931330, −1.74571274180383667961085625767,
3.12752877759680587859872222956, 3.63202919247051812961959745631, 5.29341600032119601072063398567, 5.84202998758659684397507809962, 7.16873502632218701495343664776, 8.699964952455338479617100883210, 9.910224919446315437882780054099, 10.42894991252824074832968314788, 11.49776970444422632388312337601, 12.77305226823515875891606318456