L(s) = 1 | + (−0.960 − 1.03i)2-s − 0.450i·3-s + (−0.154 + 1.99i)4-s + 5-s + (−0.467 + 0.432i)6-s − 1.25·7-s + (2.21 − 1.75i)8-s + 2.79·9-s + (−0.960 − 1.03i)10-s + (3.01 − 1.37i)11-s + (0.898 + 0.0698i)12-s − 3.65i·13-s + (1.20 + 1.30i)14-s − 0.450i·15-s + (−3.95 − 0.618i)16-s + 1.35i·17-s + ⋯ |
L(s) = 1 | + (−0.679 − 0.733i)2-s − 0.260i·3-s + (−0.0774 + 0.996i)4-s + 0.447·5-s + (−0.190 + 0.176i)6-s − 0.475·7-s + (0.784 − 0.620i)8-s + 0.932·9-s + (−0.303 − 0.328i)10-s + (0.909 − 0.414i)11-s + (0.259 + 0.0201i)12-s − 1.01i·13-s + (0.322 + 0.349i)14-s − 0.116i·15-s + (−0.987 − 0.154i)16-s + 0.329i·17-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(0.343+0.939i)Λ(2−s)
Λ(s)=(=(220s/2ΓC(s+1/2)L(s)(0.343+0.939i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
0.343+0.939i
|
Analytic conductor: |
1.75670 |
Root analytic conductor: |
1.32540 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(131,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :1/2), 0.343+0.939i)
|
Particular Values
L(1) |
≈ |
0.796331−0.556926i |
L(21) |
≈ |
0.796331−0.556926i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.960+1.03i)T |
| 5 | 1−T |
| 11 | 1+(−3.01+1.37i)T |
good | 3 | 1+0.450iT−3T2 |
| 7 | 1+1.25T+7T2 |
| 13 | 1+3.65iT−13T2 |
| 17 | 1−1.35iT−17T2 |
| 19 | 1−1.25T+19T2 |
| 23 | 1+3.06iT−23T2 |
| 29 | 1−2.29iT−29T2 |
| 31 | 1+5.36iT−31T2 |
| 37 | 1+3.17T+37T2 |
| 41 | 1−11.1iT−41T2 |
| 43 | 1−4.16T+43T2 |
| 47 | 1−9.18iT−47T2 |
| 53 | 1−4.41T+53T2 |
| 59 | 1−8.87iT−59T2 |
| 61 | 1−5.01iT−61T2 |
| 67 | 1−9.46iT−67T2 |
| 71 | 1+10.5iT−71T2 |
| 73 | 1+10.3iT−73T2 |
| 79 | 1+12.9T+79T2 |
| 83 | 1+6.68T+83T2 |
| 89 | 1+9.39T+89T2 |
| 97 | 1+18.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.14040112385413646575903457759, −10.99263820114980407191616391263, −10.08925262041510538407858183099, −9.386297445177562480619476470007, −8.287971834615081924493340883407, −7.20304791236222371755833824330, −6.11440847365051470276656342851, −4.27632374393016544779193315144, −2.94324033466690018803420983697, −1.25823738211269500436308085280,
1.69148623158413078306913117523, 4.06603420002457643688347955046, 5.33798880440075497666870362337, 6.69731861199770789060533113746, 7.16427773524480017182779222821, 8.750811927904643496487863185441, 9.552868509545512698419348275934, 10.07676086243640397745089178157, 11.30641115083137010437546634956, 12.47840139716684268869231767815