L(s) = 1 | + (−1.33 + 0.478i)2-s + 1.30·3-s + (1.54 − 1.27i)4-s + (−0.393 + 2.20i)5-s + (−1.73 + 0.624i)6-s + 1.57i·7-s + (−1.44 + 2.43i)8-s − 1.29·9-s + (−0.529 − 3.11i)10-s + (2.49 + 2.18i)11-s + (2.01 − 1.66i)12-s + 1.50·13-s + (−0.755 − 2.09i)14-s + (−0.513 + 2.87i)15-s + (0.755 − 3.92i)16-s − 4.38·17-s + ⋯ |
L(s) = 1 | + (−0.941 + 0.338i)2-s + 0.753·3-s + (0.770 − 0.636i)4-s + (−0.175 + 0.984i)5-s + (−0.708 + 0.254i)6-s + 0.596i·7-s + (−0.509 + 0.860i)8-s − 0.432·9-s + (−0.167 − 0.985i)10-s + (0.751 + 0.659i)11-s + (0.580 − 0.479i)12-s + 0.416·13-s + (−0.201 − 0.561i)14-s + (−0.132 + 0.741i)15-s + (0.188 − 0.982i)16-s − 1.06·17-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(0.205−0.978i)Λ(2−s)
Λ(s)=(=(220s/2ΓC(s+1/2)L(s)(0.205−0.978i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
0.205−0.978i
|
Analytic conductor: |
1.75670 |
Root analytic conductor: |
1.32540 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(219,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :1/2), 0.205−0.978i)
|
Particular Values
L(1) |
≈ |
0.751698+0.610359i |
L(21) |
≈ |
0.751698+0.610359i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.33−0.478i)T |
| 5 | 1+(0.393−2.20i)T |
| 11 | 1+(−2.49−2.18i)T |
good | 3 | 1−1.30T+3T2 |
| 7 | 1−1.57iT−7T2 |
| 13 | 1−1.50T+13T2 |
| 17 | 1+4.38T+17T2 |
| 19 | 1−5.72T+19T2 |
| 23 | 1−5.32T+23T2 |
| 29 | 1−6.34iT−29T2 |
| 31 | 1−4.48iT−31T2 |
| 37 | 1+6.78iT−37T2 |
| 41 | 1+8.40iT−41T2 |
| 43 | 1+11.5iT−43T2 |
| 47 | 1−4.30T+47T2 |
| 53 | 1−2.38iT−53T2 |
| 59 | 1+7.74iT−59T2 |
| 61 | 1+4.55iT−61T2 |
| 67 | 1+5.32T+67T2 |
| 71 | 1+6.85iT−71T2 |
| 73 | 1+2.63T+73T2 |
| 79 | 1+4.98T+79T2 |
| 83 | 1−1.78iT−83T2 |
| 89 | 1+2.72T+89T2 |
| 97 | 1−4.40iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.19778735797324866299201688756, −11.29073370875188108663350789451, −10.48998958704110463185426712149, −9.102366899684564633385417326866, −8.890647366156406703842207693136, −7.45486686862180651099447096056, −6.80431005865181383801167615863, −5.51034168669342553732008438524, −3.36602818591643755767482445815, −2.16166842567365339613738215129,
1.10464868421829108742534374899, 2.97490051431489866522112684772, 4.21367371859033623376301866996, 6.09153184365118856609519761181, 7.48153936028077550895555166582, 8.382782450515358549892857440964, 9.037095386002341257720084642386, 9.785407007206793221669777938478, 11.32424079482241075067570187389, 11.63834132137604500236834667155