L(s) = 1 | + (−0.896 − 1.09i)2-s + 2.84·3-s + (−0.393 + 1.96i)4-s + (−1.64 + 1.51i)5-s + (−2.54 − 3.11i)6-s + 3.37i·7-s + (2.49 − 1.32i)8-s + 5.08·9-s + (3.13 + 0.449i)10-s + (1.92 − 2.70i)11-s + (−1.11 + 5.57i)12-s + 2.23·13-s + (3.69 − 3.02i)14-s + (−4.68 + 4.29i)15-s + (−3.69 − 1.54i)16-s + 2.76·17-s + ⋯ |
L(s) = 1 | + (−0.633 − 0.773i)2-s + 1.64·3-s + (−0.196 + 0.980i)4-s + (−0.737 + 0.675i)5-s + (−1.04 − 1.26i)6-s + 1.27i·7-s + (0.883 − 0.469i)8-s + 1.69·9-s + (0.989 + 0.142i)10-s + (0.580 − 0.814i)11-s + (−0.322 + 1.60i)12-s + 0.618·13-s + (0.986 − 0.808i)14-s + (−1.21 + 1.10i)15-s + (−0.922 − 0.385i)16-s + 0.670·17-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(0.997+0.0750i)Λ(2−s)
Λ(s)=(=(220s/2ΓC(s+1/2)L(s)(0.997+0.0750i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
0.997+0.0750i
|
Analytic conductor: |
1.75670 |
Root analytic conductor: |
1.32540 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(219,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :1/2), 0.997+0.0750i)
|
Particular Values
L(1) |
≈ |
1.34063−0.0504011i |
L(21) |
≈ |
1.34063−0.0504011i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.896+1.09i)T |
| 5 | 1+(1.64−1.51i)T |
| 11 | 1+(−1.92+2.70i)T |
good | 3 | 1−2.84T+3T2 |
| 7 | 1−3.37iT−7T2 |
| 13 | 1−2.23T+13T2 |
| 17 | 1−2.76T+17T2 |
| 19 | 1+7.85T+19T2 |
| 23 | 1−0.606T+23T2 |
| 29 | 1+7.54iT−29T2 |
| 31 | 1−2.02iT−31T2 |
| 37 | 1−1.18iT−37T2 |
| 41 | 1+2.04iT−41T2 |
| 43 | 1+3.09iT−43T2 |
| 47 | 1+8.76T+47T2 |
| 53 | 1+4.21iT−53T2 |
| 59 | 1−4.33iT−59T2 |
| 61 | 1−2.84iT−61T2 |
| 67 | 1+0.606T+67T2 |
| 71 | 1+9.55iT−71T2 |
| 73 | 1−6.00T+73T2 |
| 79 | 1+3.84T+79T2 |
| 83 | 1−8.39iT−83T2 |
| 89 | 1−8.67T+89T2 |
| 97 | 1−3.02iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.16059329638475988143896140354, −11.29466666962254840877195128375, −10.21104656800196933954365353555, −9.060980603681854522765763242184, −8.490249722086344046164095965007, −7.902569112762622516797644067631, −6.46492314923051080556676551242, −4.02762784608909246488957027160, −3.17331313025030955062920568372, −2.17865559169244424281991082495,
1.49039989090425321262231695610, 3.76556554282840678620146706888, 4.58692671501313617649581694727, 6.72025811013808639620047047820, 7.57680155006708483643416221867, 8.300777216681132939461984435943, 9.037422790840353500563982813780, 9.961443574900448728051167479139, 10.97223650459976155203458717544, 12.70564078736766401037377490047