L(s) = 1 | + (−0.896 + 1.09i)2-s + 2.84·3-s + (−0.393 − 1.96i)4-s + (−1.64 − 1.51i)5-s + (−2.54 + 3.11i)6-s − 3.37i·7-s + (2.49 + 1.32i)8-s + 5.08·9-s + (3.13 − 0.449i)10-s + (1.92 + 2.70i)11-s + (−1.11 − 5.57i)12-s + 2.23·13-s + (3.69 + 3.02i)14-s + (−4.68 − 4.29i)15-s + (−3.69 + 1.54i)16-s + 2.76·17-s + ⋯ |
L(s) = 1 | + (−0.633 + 0.773i)2-s + 1.64·3-s + (−0.196 − 0.980i)4-s + (−0.737 − 0.675i)5-s + (−1.04 + 1.26i)6-s − 1.27i·7-s + (0.883 + 0.469i)8-s + 1.69·9-s + (0.989 − 0.142i)10-s + (0.580 + 0.814i)11-s + (−0.322 − 1.60i)12-s + 0.618·13-s + (0.986 + 0.808i)14-s + (−1.21 − 1.10i)15-s + (−0.922 + 0.385i)16-s + 0.670·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0750i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.997 - 0.0750i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.34063 + 0.0504011i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.34063 + 0.0504011i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.896 - 1.09i)T \) |
| 5 | \( 1 + (1.64 + 1.51i)T \) |
| 11 | \( 1 + (-1.92 - 2.70i)T \) |
good | 3 | \( 1 - 2.84T + 3T^{2} \) |
| 7 | \( 1 + 3.37iT - 7T^{2} \) |
| 13 | \( 1 - 2.23T + 13T^{2} \) |
| 17 | \( 1 - 2.76T + 17T^{2} \) |
| 19 | \( 1 + 7.85T + 19T^{2} \) |
| 23 | \( 1 - 0.606T + 23T^{2} \) |
| 29 | \( 1 - 7.54iT - 29T^{2} \) |
| 31 | \( 1 + 2.02iT - 31T^{2} \) |
| 37 | \( 1 + 1.18iT - 37T^{2} \) |
| 41 | \( 1 - 2.04iT - 41T^{2} \) |
| 43 | \( 1 - 3.09iT - 43T^{2} \) |
| 47 | \( 1 + 8.76T + 47T^{2} \) |
| 53 | \( 1 - 4.21iT - 53T^{2} \) |
| 59 | \( 1 + 4.33iT - 59T^{2} \) |
| 61 | \( 1 + 2.84iT - 61T^{2} \) |
| 67 | \( 1 + 0.606T + 67T^{2} \) |
| 71 | \( 1 - 9.55iT - 71T^{2} \) |
| 73 | \( 1 - 6.00T + 73T^{2} \) |
| 79 | \( 1 + 3.84T + 79T^{2} \) |
| 83 | \( 1 + 8.39iT - 83T^{2} \) |
| 89 | \( 1 - 8.67T + 89T^{2} \) |
| 97 | \( 1 + 3.02iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.70564078736766401037377490047, −10.97223650459976155203458717544, −9.961443574900448728051167479139, −9.037422790840353500563982813780, −8.300777216681132939461984435943, −7.57680155006708483643416221867, −6.72025811013808639620047047820, −4.58692671501313617649581694727, −3.76556554282840678620146706888, −1.49039989090425321262231695610,
2.17865559169244424281991082495, 3.17331313025030955062920568372, 4.02762784608909246488957027160, 6.46492314923051080556676551242, 7.902569112762622516797644067631, 8.490249722086344046164095965007, 9.060980603681854522765763242184, 10.21104656800196933954365353555, 11.29466666962254840877195128375, 12.16059329638475988143896140354