L(s) = 1 | + (−1 − i)2-s + (−2 + 2i)3-s + 2i·4-s + (−1 + 2i)5-s + 4·6-s + (−1 − i)7-s + (2 − 2i)8-s − 5i·9-s + (3 − i)10-s + i·11-s + (−4 − 4i)12-s + (−4 − 4i)13-s + 2i·14-s + (−2 − 6i)15-s − 4·16-s + (2 − 2i)17-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)2-s + (−1.15 + 1.15i)3-s + i·4-s + (−0.447 + 0.894i)5-s + 1.63·6-s + (−0.377 − 0.377i)7-s + (0.707 − 0.707i)8-s − 1.66i·9-s + (0.948 − 0.316i)10-s + 0.301i·11-s + (−1.15 − 1.15i)12-s + (−1.10 − 1.10i)13-s + 0.534i·14-s + (−0.516 − 1.54i)15-s − 16-s + (0.485 − 0.485i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.850 + 0.525i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.850 + 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 + i)T \) |
| 5 | \( 1 + (1 - 2i)T \) |
| 11 | \( 1 - iT \) |
good | 3 | \( 1 + (2 - 2i)T - 3iT^{2} \) |
| 7 | \( 1 + (1 + i)T + 7iT^{2} \) |
| 13 | \( 1 + (4 + 4i)T + 13iT^{2} \) |
| 17 | \( 1 + (-2 + 2i)T - 17iT^{2} \) |
| 19 | \( 1 - 2T + 19T^{2} \) |
| 23 | \( 1 + (4 - 4i)T - 23iT^{2} \) |
| 29 | \( 1 - 2iT - 29T^{2} \) |
| 31 | \( 1 + 8iT - 31T^{2} \) |
| 37 | \( 1 + (5 - 5i)T - 37iT^{2} \) |
| 41 | \( 1 + 6T + 41T^{2} \) |
| 43 | \( 1 + (-1 + i)T - 43iT^{2} \) |
| 47 | \( 1 + (4 + 4i)T + 47iT^{2} \) |
| 53 | \( 1 + (-9 - 9i)T + 53iT^{2} \) |
| 59 | \( 1 + 8T + 59T^{2} \) |
| 61 | \( 1 + 10T + 61T^{2} \) |
| 67 | \( 1 + 67iT^{2} \) |
| 71 | \( 1 - 12iT - 71T^{2} \) |
| 73 | \( 1 + (-2 - 2i)T + 73iT^{2} \) |
| 79 | \( 1 + 10T + 79T^{2} \) |
| 83 | \( 1 + (-1 + i)T - 83iT^{2} \) |
| 89 | \( 1 - 6iT - 89T^{2} \) |
| 97 | \( 1 + (3 - 3i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.74232555403500297799651086096, −10.71756217274233987093872303941, −10.06476964818689916668247879107, −9.656433953158384843371413337775, −7.85972654731057360047242333339, −6.95985893794383838459495489488, −5.44283590408288886221109332831, −4.10408770385390336147271368246, −3.05343803685162763025309296745, 0,
1.65791358384701540528400149726, 4.77350202420320666474275227815, 5.73192741945282116023582038379, 6.67731876598189408121292457164, 7.54182331162429303070473363800, 8.526512738328720310933327079795, 9.597462312647546564069275835363, 10.82321017671691156828651678220, 12.08468361701946296351947901692