L(s) = 1 | + (−1 − i)2-s + (−2 + 2i)3-s + 2i·4-s + (−1 + 2i)5-s + 4·6-s + (−1 − i)7-s + (2 − 2i)8-s − 5i·9-s + (3 − i)10-s + i·11-s + (−4 − 4i)12-s + (−4 − 4i)13-s + 2i·14-s + (−2 − 6i)15-s − 4·16-s + (2 − 2i)17-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)2-s + (−1.15 + 1.15i)3-s + i·4-s + (−0.447 + 0.894i)5-s + 1.63·6-s + (−0.377 − 0.377i)7-s + (0.707 − 0.707i)8-s − 1.66i·9-s + (0.948 − 0.316i)10-s + 0.301i·11-s + (−1.15 − 1.15i)12-s + (−1.10 − 1.10i)13-s + 0.534i·14-s + (−0.516 − 1.54i)15-s − 16-s + (0.485 − 0.485i)17-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(−0.850+0.525i)Λ(2−s)
Λ(s)=(=(220s/2ΓC(s+1/2)L(s)(−0.850+0.525i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
−0.850+0.525i
|
Analytic conductor: |
1.75670 |
Root analytic conductor: |
1.32540 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(23,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 220, ( :1/2), −0.850+0.525i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1+i)T |
| 5 | 1+(1−2i)T |
| 11 | 1−iT |
good | 3 | 1+(2−2i)T−3iT2 |
| 7 | 1+(1+i)T+7iT2 |
| 13 | 1+(4+4i)T+13iT2 |
| 17 | 1+(−2+2i)T−17iT2 |
| 19 | 1−2T+19T2 |
| 23 | 1+(4−4i)T−23iT2 |
| 29 | 1−2iT−29T2 |
| 31 | 1+8iT−31T2 |
| 37 | 1+(5−5i)T−37iT2 |
| 41 | 1+6T+41T2 |
| 43 | 1+(−1+i)T−43iT2 |
| 47 | 1+(4+4i)T+47iT2 |
| 53 | 1+(−9−9i)T+53iT2 |
| 59 | 1+8T+59T2 |
| 61 | 1+10T+61T2 |
| 67 | 1+67iT2 |
| 71 | 1−12iT−71T2 |
| 73 | 1+(−2−2i)T+73iT2 |
| 79 | 1+10T+79T2 |
| 83 | 1+(−1+i)T−83iT2 |
| 89 | 1−6iT−89T2 |
| 97 | 1+(3−3i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.74232555403500297799651086096, −10.71756217274233987093872303941, −10.06476964818689916668247879107, −9.656433953158384843371413337775, −7.85972654731057360047242333339, −6.95985893794383838459495489488, −5.44283590408288886221109332831, −4.10408770385390336147271368246, −3.05343803685162763025309296745, 0,
1.65791358384701540528400149726, 4.77350202420320666474275227815, 5.73192741945282116023582038379, 6.67731876598189408121292457164, 7.54182331162429303070473363800, 8.526512738328720310933327079795, 9.597462312647546564069275835363, 10.82321017671691156828651678220, 12.08468361701946296351947901692