L(s) = 1 | + (−1.12 − 0.857i)2-s + (0.635 − 0.635i)3-s + (0.530 + 1.92i)4-s + (−1.96 + 1.07i)5-s + (−1.25 + 0.170i)6-s + (2.25 + 2.25i)7-s + (1.05 − 2.62i)8-s + 2.19i·9-s + (3.12 + 0.475i)10-s − i·11-s + (1.56 + 0.887i)12-s + (3.81 + 3.81i)13-s + (−0.603 − 4.46i)14-s + (−0.565 + 1.92i)15-s + (−3.43 + 2.04i)16-s + (2.04 − 2.04i)17-s + ⋯ |
L(s) = 1 | + (−0.795 − 0.606i)2-s + (0.366 − 0.366i)3-s + (0.265 + 0.964i)4-s + (−0.877 + 0.479i)5-s + (−0.513 + 0.0694i)6-s + (0.851 + 0.851i)7-s + (0.373 − 0.927i)8-s + 0.731i·9-s + (0.988 + 0.150i)10-s − 0.301i·11-s + (0.450 + 0.256i)12-s + (1.05 + 1.05i)13-s + (−0.161 − 1.19i)14-s + (−0.145 + 0.497i)15-s + (−0.859 + 0.511i)16-s + (0.495 − 0.495i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.976 - 0.213i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.976 - 0.213i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.886623 + 0.0957328i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.886623 + 0.0957328i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.12 + 0.857i)T \) |
| 5 | \( 1 + (1.96 - 1.07i)T \) |
| 11 | \( 1 + iT \) |
good | 3 | \( 1 + (-0.635 + 0.635i)T - 3iT^{2} \) |
| 7 | \( 1 + (-2.25 - 2.25i)T + 7iT^{2} \) |
| 13 | \( 1 + (-3.81 - 3.81i)T + 13iT^{2} \) |
| 17 | \( 1 + (-2.04 + 2.04i)T - 17iT^{2} \) |
| 19 | \( 1 + 3.69T + 19T^{2} \) |
| 23 | \( 1 + (-2.52 + 2.52i)T - 23iT^{2} \) |
| 29 | \( 1 - 8.82iT - 29T^{2} \) |
| 31 | \( 1 + 6.21iT - 31T^{2} \) |
| 37 | \( 1 + (-1.82 + 1.82i)T - 37iT^{2} \) |
| 41 | \( 1 + 0.00765T + 41T^{2} \) |
| 43 | \( 1 + (5.73 - 5.73i)T - 43iT^{2} \) |
| 47 | \( 1 + (-1.19 - 1.19i)T + 47iT^{2} \) |
| 53 | \( 1 + (5.59 + 5.59i)T + 53iT^{2} \) |
| 59 | \( 1 + 14.2T + 59T^{2} \) |
| 61 | \( 1 - 2.14T + 61T^{2} \) |
| 67 | \( 1 + (3.37 + 3.37i)T + 67iT^{2} \) |
| 71 | \( 1 + 0.207iT - 71T^{2} \) |
| 73 | \( 1 + (0.0410 + 0.0410i)T + 73iT^{2} \) |
| 79 | \( 1 - 11.2T + 79T^{2} \) |
| 83 | \( 1 + (-11.8 + 11.8i)T - 83iT^{2} \) |
| 89 | \( 1 - 5.49iT - 89T^{2} \) |
| 97 | \( 1 + (-8.27 + 8.27i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.02248588291314398797118836801, −11.19880688046358960369235286897, −10.76188391536327613277297343353, −9.098041084073446700339313952413, −8.398126205458740455663616431974, −7.70795912472549661335245034077, −6.56408103595674591112343276201, −4.61341756862519114578008087879, −3.14361094563429899058703344062, −1.83474845829345656917256561361,
1.06490985676965274702118492390, 3.67716448612102021369433152199, 4.83341439626734801106502094567, 6.27953215998650740132984360598, 7.62879238016649699543432616368, 8.215303808750242256033883211758, 9.049915044097271451614702847427, 10.29511173174802468267905709241, 10.97157635053633939103320843745, 12.06024905126489751375539840843