L(s) = 1 | + (−1.12 − 0.857i)2-s + (0.635 − 0.635i)3-s + (0.530 + 1.92i)4-s + (−1.96 + 1.07i)5-s + (−1.25 + 0.170i)6-s + (2.25 + 2.25i)7-s + (1.05 − 2.62i)8-s + 2.19i·9-s + (3.12 + 0.475i)10-s − i·11-s + (1.56 + 0.887i)12-s + (3.81 + 3.81i)13-s + (−0.603 − 4.46i)14-s + (−0.565 + 1.92i)15-s + (−3.43 + 2.04i)16-s + (2.04 − 2.04i)17-s + ⋯ |
L(s) = 1 | + (−0.795 − 0.606i)2-s + (0.366 − 0.366i)3-s + (0.265 + 0.964i)4-s + (−0.877 + 0.479i)5-s + (−0.513 + 0.0694i)6-s + (0.851 + 0.851i)7-s + (0.373 − 0.927i)8-s + 0.731i·9-s + (0.988 + 0.150i)10-s − 0.301i·11-s + (0.450 + 0.256i)12-s + (1.05 + 1.05i)13-s + (−0.161 − 1.19i)14-s + (−0.145 + 0.497i)15-s + (−0.859 + 0.511i)16-s + (0.495 − 0.495i)17-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(0.976−0.213i)Λ(2−s)
Λ(s)=(=(220s/2ΓC(s+1/2)L(s)(0.976−0.213i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
0.976−0.213i
|
Analytic conductor: |
1.75670 |
Root analytic conductor: |
1.32540 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(23,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :1/2), 0.976−0.213i)
|
Particular Values
L(1) |
≈ |
0.886623+0.0957328i |
L(21) |
≈ |
0.886623+0.0957328i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.12+0.857i)T |
| 5 | 1+(1.96−1.07i)T |
| 11 | 1+iT |
good | 3 | 1+(−0.635+0.635i)T−3iT2 |
| 7 | 1+(−2.25−2.25i)T+7iT2 |
| 13 | 1+(−3.81−3.81i)T+13iT2 |
| 17 | 1+(−2.04+2.04i)T−17iT2 |
| 19 | 1+3.69T+19T2 |
| 23 | 1+(−2.52+2.52i)T−23iT2 |
| 29 | 1−8.82iT−29T2 |
| 31 | 1+6.21iT−31T2 |
| 37 | 1+(−1.82+1.82i)T−37iT2 |
| 41 | 1+0.00765T+41T2 |
| 43 | 1+(5.73−5.73i)T−43iT2 |
| 47 | 1+(−1.19−1.19i)T+47iT2 |
| 53 | 1+(5.59+5.59i)T+53iT2 |
| 59 | 1+14.2T+59T2 |
| 61 | 1−2.14T+61T2 |
| 67 | 1+(3.37+3.37i)T+67iT2 |
| 71 | 1+0.207iT−71T2 |
| 73 | 1+(0.0410+0.0410i)T+73iT2 |
| 79 | 1−11.2T+79T2 |
| 83 | 1+(−11.8+11.8i)T−83iT2 |
| 89 | 1−5.49iT−89T2 |
| 97 | 1+(−8.27+8.27i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.02248588291314398797118836801, −11.19880688046358960369235286897, −10.76188391536327613277297343353, −9.098041084073446700339313952413, −8.398126205458740455663616431974, −7.70795912472549661335245034077, −6.56408103595674591112343276201, −4.61341756862519114578008087879, −3.14361094563429899058703344062, −1.83474845829345656917256561361,
1.06490985676965274702118492390, 3.67716448612102021369433152199, 4.83341439626734801106502094567, 6.27953215998650740132984360598, 7.62879238016649699543432616368, 8.215303808750242256033883211758, 9.049915044097271451614702847427, 10.29511173174802468267905709241, 10.97157635053633939103320843745, 12.06024905126489751375539840843