L(s) = 1 | + (1.41 − 0.00742i)2-s + (0.373 − 0.373i)3-s + (1.99 − 0.0210i)4-s + (1.17 + 1.90i)5-s + (0.525 − 0.530i)6-s + (−2.76 − 2.76i)7-s + (2.82 − 0.0445i)8-s + 2.72i·9-s + (1.68 + 2.67i)10-s + i·11-s + (0.739 − 0.754i)12-s + (−3.64 − 3.64i)13-s + (−3.92 − 3.88i)14-s + (1.14 + 0.269i)15-s + (3.99 − 0.0840i)16-s + (1.81 − 1.81i)17-s + ⋯ |
L(s) = 1 | + (0.999 − 0.00525i)2-s + (0.215 − 0.215i)3-s + (0.999 − 0.0105i)4-s + (0.527 + 0.849i)5-s + (0.214 − 0.216i)6-s + (−1.04 − 1.04i)7-s + (0.999 − 0.0157i)8-s + 0.907i·9-s + (0.531 + 0.847i)10-s + 0.301i·11-s + (0.213 − 0.217i)12-s + (−1.01 − 1.01i)13-s + (−1.04 − 1.03i)14-s + (0.296 + 0.0695i)15-s + (0.999 − 0.0210i)16-s + (0.440 − 0.440i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0120i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0120i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.22522 + 0.0134504i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.22522 + 0.0134504i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.41 + 0.00742i)T \) |
| 5 | \( 1 + (-1.17 - 1.90i)T \) |
| 11 | \( 1 - iT \) |
good | 3 | \( 1 + (-0.373 + 0.373i)T - 3iT^{2} \) |
| 7 | \( 1 + (2.76 + 2.76i)T + 7iT^{2} \) |
| 13 | \( 1 + (3.64 + 3.64i)T + 13iT^{2} \) |
| 17 | \( 1 + (-1.81 + 1.81i)T - 17iT^{2} \) |
| 19 | \( 1 + 4.29T + 19T^{2} \) |
| 23 | \( 1 + (0.0710 - 0.0710i)T - 23iT^{2} \) |
| 29 | \( 1 - 2.00iT - 29T^{2} \) |
| 31 | \( 1 + 5.16iT - 31T^{2} \) |
| 37 | \( 1 + (-2.56 + 2.56i)T - 37iT^{2} \) |
| 41 | \( 1 + 5.55T + 41T^{2} \) |
| 43 | \( 1 + (6.95 - 6.95i)T - 43iT^{2} \) |
| 47 | \( 1 + (-6.82 - 6.82i)T + 47iT^{2} \) |
| 53 | \( 1 + (6.31 + 6.31i)T + 53iT^{2} \) |
| 59 | \( 1 + 3.52T + 59T^{2} \) |
| 61 | \( 1 - 10.1T + 61T^{2} \) |
| 67 | \( 1 + (-2.03 - 2.03i)T + 67iT^{2} \) |
| 71 | \( 1 - 2.60iT - 71T^{2} \) |
| 73 | \( 1 + (-3.23 - 3.23i)T + 73iT^{2} \) |
| 79 | \( 1 - 5.62T + 79T^{2} \) |
| 83 | \( 1 + (-2.63 + 2.63i)T - 83iT^{2} \) |
| 89 | \( 1 + 8.67iT - 89T^{2} \) |
| 97 | \( 1 + (-12.7 + 12.7i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.83185292619047937817718601670, −11.30826384910503044313791277827, −10.32788101153553398960753975789, −9.926491913417958112154603189552, −7.75101834697557697711531475813, −7.12415315126340381503844193903, −6.14827578222632260452669118881, −4.87046505866635540448624480254, −3.39031215097116196672169839289, −2.36641387220949498164034886444,
2.22771130520291193550428187627, 3.60042951001474505129146073287, 4.89901984968193412113485051548, 6.02262806281102327845303017498, 6.72141644350886702871901483088, 8.521210076503837615459004480424, 9.383678070803018891737363864669, 10.23994324965805698465459425390, 11.98266443217945602061223399785, 12.24170551714720859520817218456