L(s) = 1 | + (1.41 − 0.00742i)2-s + (0.373 − 0.373i)3-s + (1.99 − 0.0210i)4-s + (1.17 + 1.90i)5-s + (0.525 − 0.530i)6-s + (−2.76 − 2.76i)7-s + (2.82 − 0.0445i)8-s + 2.72i·9-s + (1.68 + 2.67i)10-s + i·11-s + (0.739 − 0.754i)12-s + (−3.64 − 3.64i)13-s + (−3.92 − 3.88i)14-s + (1.14 + 0.269i)15-s + (3.99 − 0.0840i)16-s + (1.81 − 1.81i)17-s + ⋯ |
L(s) = 1 | + (0.999 − 0.00525i)2-s + (0.215 − 0.215i)3-s + (0.999 − 0.0105i)4-s + (0.527 + 0.849i)5-s + (0.214 − 0.216i)6-s + (−1.04 − 1.04i)7-s + (0.999 − 0.0157i)8-s + 0.907i·9-s + (0.531 + 0.847i)10-s + 0.301i·11-s + (0.213 − 0.217i)12-s + (−1.01 − 1.01i)13-s + (−1.04 − 1.03i)14-s + (0.296 + 0.0695i)15-s + (0.999 − 0.0210i)16-s + (0.440 − 0.440i)17-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(0.999−0.0120i)Λ(2−s)
Λ(s)=(=(220s/2ΓC(s+1/2)L(s)(0.999−0.0120i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
0.999−0.0120i
|
Analytic conductor: |
1.75670 |
Root analytic conductor: |
1.32540 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(23,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :1/2), 0.999−0.0120i)
|
Particular Values
L(1) |
≈ |
2.22522+0.0134504i |
L(21) |
≈ |
2.22522+0.0134504i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.41+0.00742i)T |
| 5 | 1+(−1.17−1.90i)T |
| 11 | 1−iT |
good | 3 | 1+(−0.373+0.373i)T−3iT2 |
| 7 | 1+(2.76+2.76i)T+7iT2 |
| 13 | 1+(3.64+3.64i)T+13iT2 |
| 17 | 1+(−1.81+1.81i)T−17iT2 |
| 19 | 1+4.29T+19T2 |
| 23 | 1+(0.0710−0.0710i)T−23iT2 |
| 29 | 1−2.00iT−29T2 |
| 31 | 1+5.16iT−31T2 |
| 37 | 1+(−2.56+2.56i)T−37iT2 |
| 41 | 1+5.55T+41T2 |
| 43 | 1+(6.95−6.95i)T−43iT2 |
| 47 | 1+(−6.82−6.82i)T+47iT2 |
| 53 | 1+(6.31+6.31i)T+53iT2 |
| 59 | 1+3.52T+59T2 |
| 61 | 1−10.1T+61T2 |
| 67 | 1+(−2.03−2.03i)T+67iT2 |
| 71 | 1−2.60iT−71T2 |
| 73 | 1+(−3.23−3.23i)T+73iT2 |
| 79 | 1−5.62T+79T2 |
| 83 | 1+(−2.63+2.63i)T−83iT2 |
| 89 | 1+8.67iT−89T2 |
| 97 | 1+(−12.7+12.7i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.83185292619047937817718601670, −11.30826384910503044313791277827, −10.32788101153553398960753975789, −9.926491913417958112154603189552, −7.75101834697557697711531475813, −7.12415315126340381503844193903, −6.14827578222632260452669118881, −4.87046505866635540448624480254, −3.39031215097116196672169839289, −2.36641387220949498164034886444,
2.22771130520291193550428187627, 3.60042951001474505129146073287, 4.89901984968193412113485051548, 6.02262806281102327845303017498, 6.72141644350886702871901483088, 8.521210076503837615459004480424, 9.383678070803018891737363864669, 10.23994324965805698465459425390, 11.98266443217945602061223399785, 12.24170551714720859520817218456