L(s) = 1 | + (−0.171 + 1.40i)2-s + (−1.44 + 1.44i)3-s + (−1.94 − 0.481i)4-s + (0.849 − 2.06i)5-s + (−1.77 − 2.27i)6-s + (−3.60 − 3.60i)7-s + (1.00 − 2.64i)8-s − 1.16i·9-s + (2.75 + 1.54i)10-s + i·11-s + (3.49 − 2.10i)12-s + (−2.27 − 2.27i)13-s + (5.67 − 4.44i)14-s + (1.76 + 4.21i)15-s + (3.53 + 1.86i)16-s + (−3.21 + 3.21i)17-s + ⋯ |
L(s) = 1 | + (−0.121 + 0.992i)2-s + (−0.833 + 0.833i)3-s + (−0.970 − 0.240i)4-s + (0.379 − 0.925i)5-s + (−0.726 − 0.928i)6-s + (−1.36 − 1.36i)7-s + (0.356 − 0.934i)8-s − 0.388i·9-s + (0.872 + 0.489i)10-s + 0.301i·11-s + (1.00 − 0.608i)12-s + (−0.630 − 0.630i)13-s + (1.51 − 1.18i)14-s + (0.454 + 1.08i)15-s + (0.884 + 0.467i)16-s + (−0.780 + 0.780i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.375 + 0.926i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.375 + 0.926i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.242530 - 0.163489i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.242530 - 0.163489i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.171 - 1.40i)T \) |
| 5 | \( 1 + (-0.849 + 2.06i)T \) |
| 11 | \( 1 - iT \) |
good | 3 | \( 1 + (1.44 - 1.44i)T - 3iT^{2} \) |
| 7 | \( 1 + (3.60 + 3.60i)T + 7iT^{2} \) |
| 13 | \( 1 + (2.27 + 2.27i)T + 13iT^{2} \) |
| 17 | \( 1 + (3.21 - 3.21i)T - 17iT^{2} \) |
| 19 | \( 1 + 1.17T + 19T^{2} \) |
| 23 | \( 1 + (-1.72 + 1.72i)T - 23iT^{2} \) |
| 29 | \( 1 + 8.70iT - 29T^{2} \) |
| 31 | \( 1 - 2.23iT - 31T^{2} \) |
| 37 | \( 1 + (4.21 - 4.21i)T - 37iT^{2} \) |
| 41 | \( 1 + 1.59T + 41T^{2} \) |
| 43 | \( 1 + (-4.09 + 4.09i)T - 43iT^{2} \) |
| 47 | \( 1 + (-0.691 - 0.691i)T + 47iT^{2} \) |
| 53 | \( 1 + (3.07 + 3.07i)T + 53iT^{2} \) |
| 59 | \( 1 + 3.06T + 59T^{2} \) |
| 61 | \( 1 + 3.44T + 61T^{2} \) |
| 67 | \( 1 + (-4.51 - 4.51i)T + 67iT^{2} \) |
| 71 | \( 1 + 10.0iT - 71T^{2} \) |
| 73 | \( 1 + (-6.84 - 6.84i)T + 73iT^{2} \) |
| 79 | \( 1 - 0.973T + 79T^{2} \) |
| 83 | \( 1 + (0.453 - 0.453i)T - 83iT^{2} \) |
| 89 | \( 1 - 4.23iT - 89T^{2} \) |
| 97 | \( 1 + (-7.14 + 7.14i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.42557861063635009225928170288, −10.63150230332806463225468642174, −10.05655231877962870052649822892, −9.380573912360657024900208697317, −8.052438874087365811944688331065, −6.79171890752715109673987250764, −5.90732999239805729153565720240, −4.76114498163230636372873513441, −4.00623259357032257410502083974, −0.26953304831798036232297033671,
2.19895692645544916761152041771, 3.24728603012432998188614985357, 5.32622021161420487200850592082, 6.32311533345547062408848724748, 7.15935407681511123757414294227, 9.029295311562201642243854706141, 9.536435546308381189733312768068, 10.80581726178955947089095483730, 11.60677977771844290876122952362, 12.36574764909709453128650355821