L(s) = 1 | + (−0.171 + 1.40i)2-s + (−1.44 + 1.44i)3-s + (−1.94 − 0.481i)4-s + (0.849 − 2.06i)5-s + (−1.77 − 2.27i)6-s + (−3.60 − 3.60i)7-s + (1.00 − 2.64i)8-s − 1.16i·9-s + (2.75 + 1.54i)10-s + i·11-s + (3.49 − 2.10i)12-s + (−2.27 − 2.27i)13-s + (5.67 − 4.44i)14-s + (1.76 + 4.21i)15-s + (3.53 + 1.86i)16-s + (−3.21 + 3.21i)17-s + ⋯ |
L(s) = 1 | + (−0.121 + 0.992i)2-s + (−0.833 + 0.833i)3-s + (−0.970 − 0.240i)4-s + (0.379 − 0.925i)5-s + (−0.726 − 0.928i)6-s + (−1.36 − 1.36i)7-s + (0.356 − 0.934i)8-s − 0.388i·9-s + (0.872 + 0.489i)10-s + 0.301i·11-s + (1.00 − 0.608i)12-s + (−0.630 − 0.630i)13-s + (1.51 − 1.18i)14-s + (0.454 + 1.08i)15-s + (0.884 + 0.467i)16-s + (−0.780 + 0.780i)17-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(0.375+0.926i)Λ(2−s)
Λ(s)=(=(220s/2ΓC(s+1/2)L(s)(0.375+0.926i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
0.375+0.926i
|
Analytic conductor: |
1.75670 |
Root analytic conductor: |
1.32540 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(23,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :1/2), 0.375+0.926i)
|
Particular Values
L(1) |
≈ |
0.242530−0.163489i |
L(21) |
≈ |
0.242530−0.163489i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.171−1.40i)T |
| 5 | 1+(−0.849+2.06i)T |
| 11 | 1−iT |
good | 3 | 1+(1.44−1.44i)T−3iT2 |
| 7 | 1+(3.60+3.60i)T+7iT2 |
| 13 | 1+(2.27+2.27i)T+13iT2 |
| 17 | 1+(3.21−3.21i)T−17iT2 |
| 19 | 1+1.17T+19T2 |
| 23 | 1+(−1.72+1.72i)T−23iT2 |
| 29 | 1+8.70iT−29T2 |
| 31 | 1−2.23iT−31T2 |
| 37 | 1+(4.21−4.21i)T−37iT2 |
| 41 | 1+1.59T+41T2 |
| 43 | 1+(−4.09+4.09i)T−43iT2 |
| 47 | 1+(−0.691−0.691i)T+47iT2 |
| 53 | 1+(3.07+3.07i)T+53iT2 |
| 59 | 1+3.06T+59T2 |
| 61 | 1+3.44T+61T2 |
| 67 | 1+(−4.51−4.51i)T+67iT2 |
| 71 | 1+10.0iT−71T2 |
| 73 | 1+(−6.84−6.84i)T+73iT2 |
| 79 | 1−0.973T+79T2 |
| 83 | 1+(0.453−0.453i)T−83iT2 |
| 89 | 1−4.23iT−89T2 |
| 97 | 1+(−7.14+7.14i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.42557861063635009225928170288, −10.63150230332806463225468642174, −10.05655231877962870052649822892, −9.380573912360657024900208697317, −8.052438874087365811944688331065, −6.79171890752715109673987250764, −5.90732999239805729153565720240, −4.76114498163230636372873513441, −4.00623259357032257410502083974, −0.26953304831798036232297033671,
2.19895692645544916761152041771, 3.24728603012432998188614985357, 5.32622021161420487200850592082, 6.32311533345547062408848724748, 7.15935407681511123757414294227, 9.029295311562201642243854706141, 9.536435546308381189733312768068, 10.80581726178955947089095483730, 11.60677977771844290876122952362, 12.36574764909709453128650355821