L(s) = 1 | + (1.23 + 0.682i)2-s + (1.16 + 1.16i)3-s + (1.06 + 1.68i)4-s + (−2.21 + 0.280i)5-s + (0.649 + 2.24i)6-s + (2.18 − 2.18i)7-s + (0.172 + 2.82i)8-s − 0.277i·9-s + (−2.93 − 1.16i)10-s − i·11-s + (−0.723 + 3.21i)12-s + (−2.68 + 2.68i)13-s + (4.18 − 1.21i)14-s + (−2.91 − 2.26i)15-s + (−1.71 + 3.61i)16-s + (−1.20 − 1.20i)17-s + ⋯ |
L(s) = 1 | + (0.876 + 0.482i)2-s + (0.673 + 0.673i)3-s + (0.534 + 0.844i)4-s + (−0.992 + 0.125i)5-s + (0.265 + 0.914i)6-s + (0.824 − 0.824i)7-s + (0.0610 + 0.998i)8-s − 0.0924i·9-s + (−0.929 − 0.368i)10-s − 0.301i·11-s + (−0.208 + 0.929i)12-s + (−0.745 + 0.745i)13-s + (1.11 − 0.324i)14-s + (−0.752 − 0.583i)15-s + (−0.427 + 0.903i)16-s + (−0.292 − 0.292i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.321 - 0.947i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.321 - 0.947i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.72547 + 1.23681i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.72547 + 1.23681i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.23 - 0.682i)T \) |
| 5 | \( 1 + (2.21 - 0.280i)T \) |
| 11 | \( 1 + iT \) |
good | 3 | \( 1 + (-1.16 - 1.16i)T + 3iT^{2} \) |
| 7 | \( 1 + (-2.18 + 2.18i)T - 7iT^{2} \) |
| 13 | \( 1 + (2.68 - 2.68i)T - 13iT^{2} \) |
| 17 | \( 1 + (1.20 + 1.20i)T + 17iT^{2} \) |
| 19 | \( 1 - 0.758T + 19T^{2} \) |
| 23 | \( 1 + (4.06 + 4.06i)T + 23iT^{2} \) |
| 29 | \( 1 + 3.39iT - 29T^{2} \) |
| 31 | \( 1 + 4.55iT - 31T^{2} \) |
| 37 | \( 1 + (-4.42 - 4.42i)T + 37iT^{2} \) |
| 41 | \( 1 - 1.63T + 41T^{2} \) |
| 43 | \( 1 + (-7.31 - 7.31i)T + 43iT^{2} \) |
| 47 | \( 1 + (1.24 - 1.24i)T - 47iT^{2} \) |
| 53 | \( 1 + (4.89 - 4.89i)T - 53iT^{2} \) |
| 59 | \( 1 + 8.66T + 59T^{2} \) |
| 61 | \( 1 + 13.4T + 61T^{2} \) |
| 67 | \( 1 + (-10.3 + 10.3i)T - 67iT^{2} \) |
| 71 | \( 1 - 0.631iT - 71T^{2} \) |
| 73 | \( 1 + (11.0 - 11.0i)T - 73iT^{2} \) |
| 79 | \( 1 + 9.62T + 79T^{2} \) |
| 83 | \( 1 + (-4.44 - 4.44i)T + 83iT^{2} \) |
| 89 | \( 1 - 6.02iT - 89T^{2} \) |
| 97 | \( 1 + (1.24 + 1.24i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.45597682988815867395551828428, −11.60142811270599466463207280708, −10.82783327272404292809593572631, −9.416253796777751984029712880556, −8.166073742704267102526673186592, −7.58768300052529649837752582690, −6.38520159324684617276495880516, −4.44637461820754411506830024386, −4.27939123671738021527583071921, −2.84349855274072701476169157303,
1.86347670643013342259963302416, 3.08362205554137600776640548247, 4.55917655560923689657806459914, 5.56214843689261253523277643300, 7.22916211218784803523804399086, 7.913699485798925077394548497853, 9.011149713307147463122804768737, 10.49338528944013501659930069706, 11.44598149318954798607452722178, 12.31405577996967752973389479414