L(s) = 1 | + (1.23 + 0.682i)2-s + (1.16 + 1.16i)3-s + (1.06 + 1.68i)4-s + (−2.21 + 0.280i)5-s + (0.649 + 2.24i)6-s + (2.18 − 2.18i)7-s + (0.172 + 2.82i)8-s − 0.277i·9-s + (−2.93 − 1.16i)10-s − i·11-s + (−0.723 + 3.21i)12-s + (−2.68 + 2.68i)13-s + (4.18 − 1.21i)14-s + (−2.91 − 2.26i)15-s + (−1.71 + 3.61i)16-s + (−1.20 − 1.20i)17-s + ⋯ |
L(s) = 1 | + (0.876 + 0.482i)2-s + (0.673 + 0.673i)3-s + (0.534 + 0.844i)4-s + (−0.992 + 0.125i)5-s + (0.265 + 0.914i)6-s + (0.824 − 0.824i)7-s + (0.0610 + 0.998i)8-s − 0.0924i·9-s + (−0.929 − 0.368i)10-s − 0.301i·11-s + (−0.208 + 0.929i)12-s + (−0.745 + 0.745i)13-s + (1.11 − 0.324i)14-s + (−0.752 − 0.583i)15-s + (−0.427 + 0.903i)16-s + (−0.292 − 0.292i)17-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(0.321−0.947i)Λ(2−s)
Λ(s)=(=(220s/2ΓC(s+1/2)L(s)(0.321−0.947i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
0.321−0.947i
|
Analytic conductor: |
1.75670 |
Root analytic conductor: |
1.32540 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(67,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :1/2), 0.321−0.947i)
|
Particular Values
L(1) |
≈ |
1.72547+1.23681i |
L(21) |
≈ |
1.72547+1.23681i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.23−0.682i)T |
| 5 | 1+(2.21−0.280i)T |
| 11 | 1+iT |
good | 3 | 1+(−1.16−1.16i)T+3iT2 |
| 7 | 1+(−2.18+2.18i)T−7iT2 |
| 13 | 1+(2.68−2.68i)T−13iT2 |
| 17 | 1+(1.20+1.20i)T+17iT2 |
| 19 | 1−0.758T+19T2 |
| 23 | 1+(4.06+4.06i)T+23iT2 |
| 29 | 1+3.39iT−29T2 |
| 31 | 1+4.55iT−31T2 |
| 37 | 1+(−4.42−4.42i)T+37iT2 |
| 41 | 1−1.63T+41T2 |
| 43 | 1+(−7.31−7.31i)T+43iT2 |
| 47 | 1+(1.24−1.24i)T−47iT2 |
| 53 | 1+(4.89−4.89i)T−53iT2 |
| 59 | 1+8.66T+59T2 |
| 61 | 1+13.4T+61T2 |
| 67 | 1+(−10.3+10.3i)T−67iT2 |
| 71 | 1−0.631iT−71T2 |
| 73 | 1+(11.0−11.0i)T−73iT2 |
| 79 | 1+9.62T+79T2 |
| 83 | 1+(−4.44−4.44i)T+83iT2 |
| 89 | 1−6.02iT−89T2 |
| 97 | 1+(1.24+1.24i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.45597682988815867395551828428, −11.60142811270599466463207280708, −10.82783327272404292809593572631, −9.416253796777751984029712880556, −8.166073742704267102526673186592, −7.58768300052529649837752582690, −6.38520159324684617276495880516, −4.44637461820754411506830024386, −4.27939123671738021527583071921, −2.84349855274072701476169157303,
1.86347670643013342259963302416, 3.08362205554137600776640548247, 4.55917655560923689657806459914, 5.56214843689261253523277643300, 7.22916211218784803523804399086, 7.913699485798925077394548497853, 9.011149713307147463122804768737, 10.49338528944013501659930069706, 11.44598149318954798607452722178, 12.31405577996967752973389479414