L(s) = 1 | + 5·2-s + 5·3-s + 12·4-s + 2·5-s + 25·6-s − 3·7-s + 20·8-s + 11·9-s + 10·10-s − 11-s + 60·12-s + 10·13-s − 15·14-s + 10·15-s + 30·16-s − 5·17-s + 55·18-s − 11·19-s + 24·20-s − 15·21-s − 5·22-s + 100·24-s + 25-s + 50·26-s + 5·27-s − 36·28-s − 5·29-s + ⋯ |
L(s) = 1 | + 3.53·2-s + 2.88·3-s + 6·4-s + 0.894·5-s + 10.2·6-s − 1.13·7-s + 7.07·8-s + 11/3·9-s + 3.16·10-s − 0.301·11-s + 17.3·12-s + 2.77·13-s − 4.00·14-s + 2.58·15-s + 15/2·16-s − 1.21·17-s + 12.9·18-s − 2.52·19-s + 5.36·20-s − 3.27·21-s − 1.06·22-s + 20.4·24-s + 1/5·25-s + 9.80·26-s + 0.962·27-s − 6.80·28-s − 0.928·29-s + ⋯ |
Λ(s)=(=((216⋅58⋅118)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((216⋅58⋅118)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
48.27286280 |
L(21) |
≈ |
48.27286280 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−5T+13T2−25T3+39T4−25pT5+13p2T6−5p3T7+p4T8 |
| 5 | (1−T+T2−T3+T4)2 |
| 11 | 1+T+10T2−31T3−51T4−31pT5+10p2T6+p3T7+p4T8 |
good | 3 | 1−5T+14T2−20T3+4pT4+5pT5−2p2T6−20T7+115T8−20pT9−2p4T10+5p4T11+4p5T12−20p5T13+14p6T14−5p7T15+p8T16 |
| 7 | 1+3T+9T2+23T3+33T4−16pT5−344T6−1866T7−6767T8−1866pT9−344p2T10−16p4T11+33p4T12+23p5T13+9p6T14+3p7T15+p8T16 |
| 13 | 1−10T+63T2−255T3+985T4−3725T5+17943T6−5880pT7+309609T8−5880p2T9+17943p2T10−3725p3T11+985p4T12−255p5T13+63p6T14−10p7T15+p8T16 |
| 17 | 1+5T+22T2+95T3+630T4+2570T5+11552T6+38480T7+157739T8+38480pT9+11552p2T10+2570p3T11+630p4T12+95p5T13+22p6T14+5p7T15+p8T16 |
| 19 | 1+11T+pT2−104T3+281T4+4988T5+16586T6+34243T7+100777T8+34243pT9+16586p2T10+4988p3T11+281p4T12−104p5T13+p7T14+11p7T15+p8T16 |
| 23 | 1−3pT2+2652T4−73647T6+1794335T8−73647p2T10+2652p4T12−3p7T14+p8T16 |
| 29 | 1+5T+65T2+390T3+101pT4+16620T5+100910T6+18895pT7+94619pT8+18895p2T9+100910p2T10+16620p3T11+101p5T12+390p5T13+65p6T14+5p7T15+p8T16 |
| 31 | 1−10T+125T2−1025T3+7269T4−47065T5+8105pT6−1412070T7+7458211T8−1412070pT9+8105p3T10−47065p3T11+7269p4T12−1025p5T13+125p6T14−10p7T15+p8T16 |
| 37 | 1−20T+121T2−100T3+422T4−24080T5+162413T6−352450T7−62645T8−352450pT9+162413p2T10−24080p3T11+422p4T12−100p5T13+121p6T14−20p7T15+p8T16 |
| 41 | 1−10T+139T2−790T3+4350T4−100T5−182029T6+1962350T7−16190221T8+1962350pT9−182029p2T10−100p3T11+4350p4T12−790p5T13+139p6T14−10p7T15+p8T16 |
| 43 | (1+17T+261T2+2356T3+18809T4+2356pT5+261p2T6+17p3T7+p4T8)2 |
| 47 | 1+79T2−615T3+4647T4−48585T5+415847T6−2255820T7+23961215T8−2255820pT9+415847p2T10−48585p3T11+4647p4T12−615p5T13+79p6T14+p8T16 |
| 53 | 1+7T−63T2−699T3−1039T4+60732T5+451460T6−1646222T7−29558181T8−1646222pT9+451460p2T10+60732p3T11−1039p4T12−699p5T13−63p6T14+7p7T15+p8T16 |
| 59 | 1+5T+55T2+1055T3+7269T4+59120T5+675980T6+4611020T7+35189921T8+4611020pT9+675980p2T10+59120p3T11+7269p4T12+1055p5T13+55p6T14+5p7T15+p8T16 |
| 61 | 1+10T+40T2−970T3−11951T4−57310T5+116720T6+4738300T7+39395361T8+4738300pT9+116720p2T10−57310p3T11−11951p4T12−970p5T13+40p6T14+10p7T15+p8T16 |
| 67 | 1−349T2+59052T4−6537947T6+515546375T8−6537947p2T10+59052p4T12−349p6T14+p8T16 |
| 71 | 1−90T+3925T2−110820T3+2283354T4−36667110T5+477857375T6−5182638450T7+47432387951T8−5182638450pT9+477857375p2T10−36667110p3T11+2283354p4T12−110820p5T13+3925p6T14−90p7T15+p8T16 |
| 73 | 1−5T+248T2−805T3+20520T4−4970T5+425438T6+6710670T7−20435801T8+6710670pT9+425438p2T10−4970p3T11+20520p4T12−805p5T13+248p6T14−5p7T15+p8T16 |
| 79 | 1+21T+184T2+1056T3+9486T4+95943T5+278336T6−4558662T7−59027833T8−4558662pT9+278336p2T10+95943p3T11+9486p4T12+1056p5T13+184p6T14+21p7T15+p8T16 |
| 83 | 1−19T−49T2+4489T3−30697T4−331754T5+5033994T6+7836182T7−444554067T8+7836182pT9+5033994p2T10−331754p3T11−30697p4T12+4489p5T13−49p6T14−19p7T15+p8T16 |
| 89 | (1−10T+236T2−1540T3+26461T4−1540pT5+236p2T6−10p3T7+p4T8)2 |
| 97 | 1+44T+713T2+4508T3−6314T4−300796T5−1224575T6+43495854T7+786406539T8+43495854pT9−1224575p2T10−300796p3T11−6314p4T12+4508p5T13+713p6T14+44p7T15+p8T16 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.61612435607151835289827886636, −5.47427156556099582481359172384, −5.22573931640927602183731235124, −4.96130055507239827965535109454, −4.84581392550468243132209204006, −4.66955891635857849735655446844, −4.61954457434242279951035309727, −4.48924300063501911734850840226, −4.19752633136315987590021497591, −3.96100825597302374629343378617, −3.83880409490315311350009556010, −3.73459298300824883293314798711, −3.69470324510167727779705716799, −3.65812977026697535832247971015, −3.37106599445265061565678770946, −3.24057716808216265642205423763, −2.85893416084571325850330162329, −2.74984404934146479115254744435, −2.53953284929822799054687769771, −2.47123309731214470634783270092, −2.26720114673310848632125787792, −1.94965721694096998715290383455, −1.68325905157608750826784759236, −1.62907234149835594352884690199, −0.964619208924802567703869705844,
0.964619208924802567703869705844, 1.62907234149835594352884690199, 1.68325905157608750826784759236, 1.94965721694096998715290383455, 2.26720114673310848632125787792, 2.47123309731214470634783270092, 2.53953284929822799054687769771, 2.74984404934146479115254744435, 2.85893416084571325850330162329, 3.24057716808216265642205423763, 3.37106599445265061565678770946, 3.65812977026697535832247971015, 3.69470324510167727779705716799, 3.73459298300824883293314798711, 3.83880409490315311350009556010, 3.96100825597302374629343378617, 4.19752633136315987590021497591, 4.48924300063501911734850840226, 4.61954457434242279951035309727, 4.66955891635857849735655446844, 4.84581392550468243132209204006, 4.96130055507239827965535109454, 5.22573931640927602183731235124, 5.47427156556099582481359172384, 5.61612435607151835289827886636
Plot not available for L-functions of degree greater than 10.