L(s) = 1 | + (−1.21 − 0.727i)2-s + (0.919 − 0.298i)3-s + (0.941 + 1.76i)4-s + (0.809 + 0.587i)5-s + (−1.33 − 0.306i)6-s + (0.819 − 2.52i)7-s + (0.141 − 2.82i)8-s + (−1.67 + 1.21i)9-s + (−0.553 − 1.30i)10-s + (3.31 − 0.0962i)11-s + (1.39 + 1.34i)12-s + (3.18 + 4.38i)13-s + (−2.82 + 2.46i)14-s + (0.919 + 0.298i)15-s + (−2.22 + 3.32i)16-s + (2.85 − 3.92i)17-s + ⋯ |
L(s) = 1 | + (−0.857 − 0.514i)2-s + (0.530 − 0.172i)3-s + (0.470 + 0.882i)4-s + (0.361 + 0.262i)5-s + (−0.543 − 0.125i)6-s + (0.309 − 0.953i)7-s + (0.0501 − 0.998i)8-s + (−0.557 + 0.404i)9-s + (−0.175 − 0.411i)10-s + (0.999 − 0.0290i)11-s + (0.401 + 0.387i)12-s + (0.884 + 1.21i)13-s + (−0.756 + 0.658i)14-s + (0.237 + 0.0771i)15-s + (−0.556 + 0.830i)16-s + (0.692 − 0.952i)17-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(0.785+0.619i)Λ(2−s)
Λ(s)=(=(220s/2ΓC(s+1/2)L(s)(0.785+0.619i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
0.785+0.619i
|
Analytic conductor: |
1.75670 |
Root analytic conductor: |
1.32540 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(151,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :1/2), 0.785+0.619i)
|
Particular Values
L(1) |
≈ |
1.02350−0.355125i |
L(21) |
≈ |
1.02350−0.355125i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.21+0.727i)T |
| 5 | 1+(−0.809−0.587i)T |
| 11 | 1+(−3.31+0.0962i)T |
good | 3 | 1+(−0.919+0.298i)T+(2.42−1.76i)T2 |
| 7 | 1+(−0.819+2.52i)T+(−5.66−4.11i)T2 |
| 13 | 1+(−3.18−4.38i)T+(−4.01+12.3i)T2 |
| 17 | 1+(−2.85+3.92i)T+(−5.25−16.1i)T2 |
| 19 | 1+(0.860+2.64i)T+(−15.3+11.1i)T2 |
| 23 | 1+6.73iT−23T2 |
| 29 | 1+(5.27+1.71i)T+(23.4+17.0i)T2 |
| 31 | 1+(−2.76−3.81i)T+(−9.57+29.4i)T2 |
| 37 | 1+(2.07−6.38i)T+(−29.9−21.7i)T2 |
| 41 | 1+(5.13−1.66i)T+(33.1−24.0i)T2 |
| 43 | 1−5.61T+43T2 |
| 47 | 1+(11.2−3.66i)T+(38.0−27.6i)T2 |
| 53 | 1+(−4.06+2.95i)T+(16.3−50.4i)T2 |
| 59 | 1+(3.91+1.27i)T+(47.7+34.6i)T2 |
| 61 | 1+(4.69−6.46i)T+(−18.8−58.0i)T2 |
| 67 | 1+1.99iT−67T2 |
| 71 | 1+(7.82−10.7i)T+(−21.9−67.5i)T2 |
| 73 | 1+(10.0+3.26i)T+(59.0+42.9i)T2 |
| 79 | 1+(9.25−6.72i)T+(24.4−75.1i)T2 |
| 83 | 1+(7.51+5.45i)T+(25.6+78.9i)T2 |
| 89 | 1−14.5T+89T2 |
| 97 | 1+(−2.55+1.85i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.77630045264357452672409503736, −11.20451168176233635852199506280, −10.22161078704056332850317185354, −9.156550160402639284822714148223, −8.469596878807816901635015270290, −7.29199475759097600807741301574, −6.47584689261077473610732859057, −4.34396262172962019733651815047, −3.01546319558023640236224805950, −1.50842593829999927508949326669,
1.67768487296800924983497055325, 3.46752358364003216049884494716, 5.64760165041214599391904731928, 6.01258246756491939269692195448, 7.74686810386392356856377071795, 8.592443811454467566825596151921, 9.168087121596435532768775112872, 10.13325328496421396659319767848, 11.30492544636048388654637106616, 12.20955779200205449296141618888