L(s) = 1 | + (−0.317 − 1.37i)2-s + (2.51 − 0.817i)3-s + (−1.79 + 0.874i)4-s + (0.809 + 0.587i)5-s + (−1.92 − 3.21i)6-s + (−0.0373 + 0.114i)7-s + (1.77 + 2.20i)8-s + (3.24 − 2.35i)9-s + (0.553 − 1.30i)10-s + (2.16 − 2.50i)11-s + (−3.81 + 3.67i)12-s + (−3.60 − 4.95i)13-s + (0.170 + 0.0150i)14-s + (2.51 + 0.817i)15-s + (2.47 − 3.14i)16-s + (−3.69 + 5.08i)17-s + ⋯ |
L(s) = 1 | + (−0.224 − 0.974i)2-s + (1.45 − 0.472i)3-s + (−0.899 + 0.437i)4-s + (0.361 + 0.262i)5-s + (−0.786 − 1.31i)6-s + (−0.0141 + 0.0434i)7-s + (0.627 + 0.778i)8-s + (1.08 − 0.784i)9-s + (0.175 − 0.411i)10-s + (0.654 − 0.756i)11-s + (−1.10 + 1.05i)12-s + (−0.998 − 1.37i)13-s + (0.0454 + 0.00401i)14-s + (0.649 + 0.211i)15-s + (0.617 − 0.786i)16-s + (−0.895 + 1.23i)17-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(0.122+0.992i)Λ(2−s)
Λ(s)=(=(220s/2ΓC(s+1/2)L(s)(0.122+0.992i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
0.122+0.992i
|
Analytic conductor: |
1.75670 |
Root analytic conductor: |
1.32540 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(151,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :1/2), 0.122+0.992i)
|
Particular Values
L(1) |
≈ |
1.19675−1.05796i |
L(21) |
≈ |
1.19675−1.05796i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.317+1.37i)T |
| 5 | 1+(−0.809−0.587i)T |
| 11 | 1+(−2.16+2.50i)T |
good | 3 | 1+(−2.51+0.817i)T+(2.42−1.76i)T2 |
| 7 | 1+(0.0373−0.114i)T+(−5.66−4.11i)T2 |
| 13 | 1+(3.60+4.95i)T+(−4.01+12.3i)T2 |
| 17 | 1+(3.69−5.08i)T+(−5.25−16.1i)T2 |
| 19 | 1+(−2.12−6.54i)T+(−15.3+11.1i)T2 |
| 23 | 1−0.892iT−23T2 |
| 29 | 1+(8.01+2.60i)T+(23.4+17.0i)T2 |
| 31 | 1+(−2.18−3.00i)T+(−9.57+29.4i)T2 |
| 37 | 1+(−0.0956+0.294i)T+(−29.9−21.7i)T2 |
| 41 | 1+(−1.65+0.538i)T+(33.1−24.0i)T2 |
| 43 | 1−2.73T+43T2 |
| 47 | 1+(0.176−0.0572i)T+(38.0−27.6i)T2 |
| 53 | 1+(5.28−3.83i)T+(16.3−50.4i)T2 |
| 59 | 1+(−1.79−0.583i)T+(47.7+34.6i)T2 |
| 61 | 1+(−0.785+1.08i)T+(−18.8−58.0i)T2 |
| 67 | 1+10.2iT−67T2 |
| 71 | 1+(1.37−1.89i)T+(−21.9−67.5i)T2 |
| 73 | 1+(−0.938−0.305i)T+(59.0+42.9i)T2 |
| 79 | 1+(−3.76+2.73i)T+(24.4−75.1i)T2 |
| 83 | 1+(4.72+3.43i)T+(25.6+78.9i)T2 |
| 89 | 1+12.6T+89T2 |
| 97 | 1+(−4.90+3.56i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.32599199729321091847118568278, −10.96123129576630163621910689921, −10.00992204999340640410827275038, −9.159054515339040282234077762175, −8.246442008997446956553635520674, −7.55515754611158899479011044035, −5.78642745733490598131442511975, −3.86920646866479806392111468243, −2.94736250963279701388658599669, −1.74163957948841734115940594688,
2.29673661208280075467558209571, 4.17464197974398390641968060244, 4.93979583381904405025878302397, 6.84231427428518995568195784674, 7.41350583842732264545700507194, 8.890159734195619177003032644500, 9.283975136801755883764257174992, 9.803658319139354316446761733422, 11.51439553018973332085834794095, 13.02249218893413163287858984033