Properties

Label 2-220-44.19-c1-0-22
Degree $2$
Conductor $220$
Sign $0.424 + 0.905i$
Analytic cond. $1.75670$
Root an. cond. $1.32540$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.988 − 1.01i)2-s + (1.88 − 0.612i)3-s + (−0.0464 − 1.99i)4-s + (0.809 + 0.587i)5-s + (1.24 − 2.51i)6-s + (−0.668 + 2.05i)7-s + (−2.06 − 1.92i)8-s + (0.755 − 0.548i)9-s + (1.39 − 0.237i)10-s + (−3.31 + 0.105i)11-s + (−1.31 − 3.74i)12-s + (1.85 + 2.55i)13-s + (1.42 + 2.70i)14-s + (1.88 + 0.612i)15-s + (−3.99 + 0.185i)16-s + (−2.62 + 3.60i)17-s + ⋯
L(s)  = 1  + (0.698 − 0.715i)2-s + (1.08 − 0.353i)3-s + (−0.0232 − 0.999i)4-s + (0.361 + 0.262i)5-s + (0.507 − 1.02i)6-s + (−0.252 + 0.777i)7-s + (−0.731 − 0.682i)8-s + (0.251 − 0.182i)9-s + (0.440 − 0.0750i)10-s + (−0.999 + 0.0316i)11-s + (−0.379 − 1.08i)12-s + (0.515 + 0.709i)13-s + (0.379 + 0.724i)14-s + (0.487 + 0.158i)15-s + (−0.998 + 0.0464i)16-s + (−0.635 + 0.874i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.424 + 0.905i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.424 + 0.905i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(220\)    =    \(2^{2} \cdot 5 \cdot 11\)
Sign: $0.424 + 0.905i$
Analytic conductor: \(1.75670\)
Root analytic conductor: \(1.32540\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{220} (151, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 220,\ (\ :1/2),\ 0.424 + 0.905i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.85961 - 1.18171i\)
\(L(\frac12)\) \(\approx\) \(1.85961 - 1.18171i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.988 + 1.01i)T \)
5 \( 1 + (-0.809 - 0.587i)T \)
11 \( 1 + (3.31 - 0.105i)T \)
good3 \( 1 + (-1.88 + 0.612i)T + (2.42 - 1.76i)T^{2} \)
7 \( 1 + (0.668 - 2.05i)T + (-5.66 - 4.11i)T^{2} \)
13 \( 1 + (-1.85 - 2.55i)T + (-4.01 + 12.3i)T^{2} \)
17 \( 1 + (2.62 - 3.60i)T + (-5.25 - 16.1i)T^{2} \)
19 \( 1 + (1.21 + 3.74i)T + (-15.3 + 11.1i)T^{2} \)
23 \( 1 + 8.67iT - 23T^{2} \)
29 \( 1 + (-6.12 - 1.99i)T + (23.4 + 17.0i)T^{2} \)
31 \( 1 + (-0.673 - 0.927i)T + (-9.57 + 29.4i)T^{2} \)
37 \( 1 + (-3.17 + 9.78i)T + (-29.9 - 21.7i)T^{2} \)
41 \( 1 + (1.29 - 0.421i)T + (33.1 - 24.0i)T^{2} \)
43 \( 1 - 4.00T + 43T^{2} \)
47 \( 1 + (3.61 - 1.17i)T + (38.0 - 27.6i)T^{2} \)
53 \( 1 + (-6.21 + 4.51i)T + (16.3 - 50.4i)T^{2} \)
59 \( 1 + (0.112 + 0.0366i)T + (47.7 + 34.6i)T^{2} \)
61 \( 1 + (7.07 - 9.74i)T + (-18.8 - 58.0i)T^{2} \)
67 \( 1 - 6.69iT - 67T^{2} \)
71 \( 1 + (-0.556 + 0.766i)T + (-21.9 - 67.5i)T^{2} \)
73 \( 1 + (-1.45 - 0.471i)T + (59.0 + 42.9i)T^{2} \)
79 \( 1 + (-3.49 + 2.53i)T + (24.4 - 75.1i)T^{2} \)
83 \( 1 + (0.790 + 0.574i)T + (25.6 + 78.9i)T^{2} \)
89 \( 1 + 13.2T + 89T^{2} \)
97 \( 1 + (-11.7 + 8.52i)T + (29.9 - 92.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.47607351664276414130043553955, −11.11417348943161230452723141651, −10.36369572226521495638502375288, −9.051665984436130551010411916803, −8.518737626908185358750470127277, −6.84666500308664187067667663233, −5.82081666678347137614169709957, −4.39131578465239767492875041701, −2.81681413601261214230889203425, −2.21105160766167002279830923842, 2.77753992010886957018276342360, 3.77419265402767692236574947123, 5.04593010799797638107837799630, 6.25058836712704833631221876392, 7.63454784091303112640316007609, 8.246796641625561920017469927753, 9.350088775793844800735219219068, 10.32826045282182695817912270109, 11.69342239676581801482713315531, 13.01062197929410793136657862035

Graph of the $Z$-function along the critical line