L(s) = 1 | + (−1.26 − 0.627i)2-s + (−1.88 − 0.612i)3-s + (1.21 + 1.59i)4-s + (0.809 − 0.587i)5-s + (2.00 + 1.96i)6-s + (0.668 + 2.05i)7-s + (−0.539 − 2.77i)8-s + (0.755 + 0.548i)9-s + (−1.39 + 0.237i)10-s + (3.31 + 0.105i)11-s + (−1.31 − 3.74i)12-s + (1.85 − 2.55i)13-s + (0.443 − 3.02i)14-s + (−1.88 + 0.612i)15-s + (−1.05 + 3.85i)16-s + (−2.62 − 3.60i)17-s + ⋯ |
L(s) = 1 | + (−0.896 − 0.443i)2-s + (−1.08 − 0.353i)3-s + (0.606 + 0.795i)4-s + (0.361 − 0.262i)5-s + (0.819 + 0.800i)6-s + (0.252 + 0.777i)7-s + (−0.190 − 0.981i)8-s + (0.251 + 0.182i)9-s + (−0.440 + 0.0750i)10-s + (0.999 + 0.0316i)11-s + (−0.379 − 1.08i)12-s + (0.515 − 0.709i)13-s + (0.118 − 0.809i)14-s + (−0.487 + 0.158i)15-s + (−0.264 + 0.964i)16-s + (−0.635 − 0.874i)17-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(0.233+0.972i)Λ(2−s)
Λ(s)=(=(220s/2ΓC(s+1/2)L(s)(0.233+0.972i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
0.233+0.972i
|
Analytic conductor: |
1.75670 |
Root analytic conductor: |
1.32540 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(51,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :1/2), 0.233+0.972i)
|
Particular Values
L(1) |
≈ |
0.488553−0.384918i |
L(21) |
≈ |
0.488553−0.384918i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.26+0.627i)T |
| 5 | 1+(−0.809+0.587i)T |
| 11 | 1+(−3.31−0.105i)T |
good | 3 | 1+(1.88+0.612i)T+(2.42+1.76i)T2 |
| 7 | 1+(−0.668−2.05i)T+(−5.66+4.11i)T2 |
| 13 | 1+(−1.85+2.55i)T+(−4.01−12.3i)T2 |
| 17 | 1+(2.62+3.60i)T+(−5.25+16.1i)T2 |
| 19 | 1+(−1.21+3.74i)T+(−15.3−11.1i)T2 |
| 23 | 1+8.67iT−23T2 |
| 29 | 1+(−6.12+1.99i)T+(23.4−17.0i)T2 |
| 31 | 1+(0.673−0.927i)T+(−9.57−29.4i)T2 |
| 37 | 1+(−3.17−9.78i)T+(−29.9+21.7i)T2 |
| 41 | 1+(1.29+0.421i)T+(33.1+24.0i)T2 |
| 43 | 1+4.00T+43T2 |
| 47 | 1+(−3.61−1.17i)T+(38.0+27.6i)T2 |
| 53 | 1+(−6.21−4.51i)T+(16.3+50.4i)T2 |
| 59 | 1+(−0.112+0.0366i)T+(47.7−34.6i)T2 |
| 61 | 1+(7.07+9.74i)T+(−18.8+58.0i)T2 |
| 67 | 1−6.69iT−67T2 |
| 71 | 1+(0.556+0.766i)T+(−21.9+67.5i)T2 |
| 73 | 1+(−1.45+0.471i)T+(59.0−42.9i)T2 |
| 79 | 1+(3.49+2.53i)T+(24.4+75.1i)T2 |
| 83 | 1+(−0.790+0.574i)T+(25.6−78.9i)T2 |
| 89 | 1+13.2T+89T2 |
| 97 | 1+(−11.7−8.52i)T+(29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.89010530603572360982992662835, −11.25176303146210697988742531117, −10.26914629483125830528139178925, −9.066670993631965027493072274439, −8.436078263932833474915328917093, −6.83115657455616305474415272960, −6.17761854652206348656129562925, −4.76960222343025091658111338697, −2.69756038019811534428764253522, −0.907462102749955900493532762874,
1.47679682169807218339312834579, 4.08934291552501013696870829348, 5.59633662589896588083797546851, 6.36305735165699400323632235048, 7.31666539140329952540481791194, 8.644926225352095163268942746399, 9.696558419705093250784650684264, 10.58996349938243587182017056071, 11.22133367057719886449893381888, 11.98134171073134742591159952258