L(s) = 1 | + (−1.26 − 0.627i)2-s + (−1.88 − 0.612i)3-s + (1.21 + 1.59i)4-s + (0.809 − 0.587i)5-s + (2.00 + 1.96i)6-s + (0.668 + 2.05i)7-s + (−0.539 − 2.77i)8-s + (0.755 + 0.548i)9-s + (−1.39 + 0.237i)10-s + (3.31 + 0.105i)11-s + (−1.31 − 3.74i)12-s + (1.85 − 2.55i)13-s + (0.443 − 3.02i)14-s + (−1.88 + 0.612i)15-s + (−1.05 + 3.85i)16-s + (−2.62 − 3.60i)17-s + ⋯ |
L(s) = 1 | + (−0.896 − 0.443i)2-s + (−1.08 − 0.353i)3-s + (0.606 + 0.795i)4-s + (0.361 − 0.262i)5-s + (0.819 + 0.800i)6-s + (0.252 + 0.777i)7-s + (−0.190 − 0.981i)8-s + (0.251 + 0.182i)9-s + (−0.440 + 0.0750i)10-s + (0.999 + 0.0316i)11-s + (−0.379 − 1.08i)12-s + (0.515 − 0.709i)13-s + (0.118 − 0.809i)14-s + (−0.487 + 0.158i)15-s + (−0.264 + 0.964i)16-s + (−0.635 − 0.874i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.233 + 0.972i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.233 + 0.972i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.488553 - 0.384918i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.488553 - 0.384918i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.26 + 0.627i)T \) |
| 5 | \( 1 + (-0.809 + 0.587i)T \) |
| 11 | \( 1 + (-3.31 - 0.105i)T \) |
good | 3 | \( 1 + (1.88 + 0.612i)T + (2.42 + 1.76i)T^{2} \) |
| 7 | \( 1 + (-0.668 - 2.05i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-1.85 + 2.55i)T + (-4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (2.62 + 3.60i)T + (-5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-1.21 + 3.74i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + 8.67iT - 23T^{2} \) |
| 29 | \( 1 + (-6.12 + 1.99i)T + (23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (0.673 - 0.927i)T + (-9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-3.17 - 9.78i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (1.29 + 0.421i)T + (33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 4.00T + 43T^{2} \) |
| 47 | \( 1 + (-3.61 - 1.17i)T + (38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-6.21 - 4.51i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.112 + 0.0366i)T + (47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (7.07 + 9.74i)T + (-18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 6.69iT - 67T^{2} \) |
| 71 | \( 1 + (0.556 + 0.766i)T + (-21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-1.45 + 0.471i)T + (59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (3.49 + 2.53i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-0.790 + 0.574i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 13.2T + 89T^{2} \) |
| 97 | \( 1 + (-11.7 - 8.52i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.89010530603572360982992662835, −11.25176303146210697988742531117, −10.26914629483125830528139178925, −9.066670993631965027493072274439, −8.436078263932833474915328917093, −6.83115657455616305474415272960, −6.17761854652206348656129562925, −4.76960222343025091658111338697, −2.69756038019811534428764253522, −0.907462102749955900493532762874,
1.47679682169807218339312834579, 4.08934291552501013696870829348, 5.59633662589896588083797546851, 6.36305735165699400323632235048, 7.31666539140329952540481791194, 8.644926225352095163268942746399, 9.696558419705093250784650684264, 10.58996349938243587182017056071, 11.22133367057719886449893381888, 11.98134171073134742591159952258