L(s) = 1 | + (0.988 + 1.01i)2-s + (1.88 + 0.612i)3-s + (−0.0464 + 1.99i)4-s + (0.809 − 0.587i)5-s + (1.24 + 2.51i)6-s + (−0.668 − 2.05i)7-s + (−2.06 + 1.92i)8-s + (0.755 + 0.548i)9-s + (1.39 + 0.237i)10-s + (−3.31 − 0.105i)11-s + (−1.31 + 3.74i)12-s + (1.85 − 2.55i)13-s + (1.42 − 2.70i)14-s + (1.88 − 0.612i)15-s + (−3.99 − 0.185i)16-s + (−2.62 − 3.60i)17-s + ⋯ |
L(s) = 1 | + (0.698 + 0.715i)2-s + (1.08 + 0.353i)3-s + (−0.0232 + 0.999i)4-s + (0.361 − 0.262i)5-s + (0.507 + 1.02i)6-s + (−0.252 − 0.777i)7-s + (−0.731 + 0.682i)8-s + (0.251 + 0.182i)9-s + (0.440 + 0.0750i)10-s + (−0.999 − 0.0316i)11-s + (−0.379 + 1.08i)12-s + (0.515 − 0.709i)13-s + (0.379 − 0.724i)14-s + (0.487 − 0.158i)15-s + (−0.998 − 0.0464i)16-s + (−0.635 − 0.874i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.424 - 0.905i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.424 - 0.905i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.85961 + 1.18171i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.85961 + 1.18171i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.988 - 1.01i)T \) |
| 5 | \( 1 + (-0.809 + 0.587i)T \) |
| 11 | \( 1 + (3.31 + 0.105i)T \) |
good | 3 | \( 1 + (-1.88 - 0.612i)T + (2.42 + 1.76i)T^{2} \) |
| 7 | \( 1 + (0.668 + 2.05i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-1.85 + 2.55i)T + (-4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (2.62 + 3.60i)T + (-5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (1.21 - 3.74i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 8.67iT - 23T^{2} \) |
| 29 | \( 1 + (-6.12 + 1.99i)T + (23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-0.673 + 0.927i)T + (-9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-3.17 - 9.78i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (1.29 + 0.421i)T + (33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 4.00T + 43T^{2} \) |
| 47 | \( 1 + (3.61 + 1.17i)T + (38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-6.21 - 4.51i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (0.112 - 0.0366i)T + (47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (7.07 + 9.74i)T + (-18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 6.69iT - 67T^{2} \) |
| 71 | \( 1 + (-0.556 - 0.766i)T + (-21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-1.45 + 0.471i)T + (59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-3.49 - 2.53i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (0.790 - 0.574i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 13.2T + 89T^{2} \) |
| 97 | \( 1 + (-11.7 - 8.52i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.01062197929410793136657862035, −11.69342239676581801482713315531, −10.32826045282182695817912270109, −9.350088775793844800735219219068, −8.246796641625561920017469927753, −7.63454784091303112640316007609, −6.25058836712704833631221876392, −5.04593010799797638107837799630, −3.77419265402767692236574947123, −2.77753992010886957018276342360,
2.21105160766167002279830923842, 2.81681413601261214230889203425, 4.39131578465239767492875041701, 5.82081666678347137614169709957, 6.84666500308664187067667663233, 8.518737626908185358750470127277, 9.051665984436130551010411916803, 10.36369572226521495638502375288, 11.11417348943161230452723141651, 12.47607351664276414130043553955