Properties

Label 2-220-44.19-c1-0-14
Degree 22
Conductor 220220
Sign 0.7460.665i0.746 - 0.665i
Analytic cond. 1.756701.75670
Root an. cond. 1.325401.32540
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.893 + 1.09i)2-s + (2.27 − 0.737i)3-s + (−0.402 + 1.95i)4-s + (−0.809 − 0.587i)5-s + (2.83 + 1.82i)6-s + (0.461 − 1.42i)7-s + (−2.50 + 1.30i)8-s + (2.18 − 1.58i)9-s + (−0.0788 − 1.41i)10-s + (1.72 + 2.83i)11-s + (0.531 + 4.74i)12-s + (−1.61 − 2.22i)13-s + (1.97 − 0.764i)14-s + (−2.27 − 0.737i)15-s + (−3.67 − 1.57i)16-s + (−3.56 + 4.90i)17-s + ⋯
L(s)  = 1  + (0.631 + 0.774i)2-s + (1.31 − 0.425i)3-s + (−0.201 + 0.979i)4-s + (−0.361 − 0.262i)5-s + (1.15 + 0.746i)6-s + (0.174 − 0.537i)7-s + (−0.886 + 0.463i)8-s + (0.728 − 0.529i)9-s + (−0.0249 − 0.446i)10-s + (0.519 + 0.854i)11-s + (0.153 + 1.36i)12-s + (−0.447 − 0.616i)13-s + (0.526 − 0.204i)14-s + (−0.586 − 0.190i)15-s + (−0.919 − 0.394i)16-s + (−0.863 + 1.18i)17-s + ⋯

Functional equation

Λ(s)=(220s/2ΓC(s)L(s)=((0.7460.665i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.746 - 0.665i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(220s/2ΓC(s+1/2)L(s)=((0.7460.665i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.746 - 0.665i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 220220    =    225112^{2} \cdot 5 \cdot 11
Sign: 0.7460.665i0.746 - 0.665i
Analytic conductor: 1.756701.75670
Root analytic conductor: 1.325401.32540
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ220(151,)\chi_{220} (151, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 220, ( :1/2), 0.7460.665i)(2,\ 220,\ (\ :1/2),\ 0.746 - 0.665i)

Particular Values

L(1)L(1) \approx 2.01851+0.768486i2.01851 + 0.768486i
L(12)L(\frac12) \approx 2.01851+0.768486i2.01851 + 0.768486i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.8931.09i)T 1 + (-0.893 - 1.09i)T
5 1+(0.809+0.587i)T 1 + (0.809 + 0.587i)T
11 1+(1.722.83i)T 1 + (-1.72 - 2.83i)T
good3 1+(2.27+0.737i)T+(2.421.76i)T2 1 + (-2.27 + 0.737i)T + (2.42 - 1.76i)T^{2}
7 1+(0.461+1.42i)T+(5.664.11i)T2 1 + (-0.461 + 1.42i)T + (-5.66 - 4.11i)T^{2}
13 1+(1.61+2.22i)T+(4.01+12.3i)T2 1 + (1.61 + 2.22i)T + (-4.01 + 12.3i)T^{2}
17 1+(3.564.90i)T+(5.2516.1i)T2 1 + (3.56 - 4.90i)T + (-5.25 - 16.1i)T^{2}
19 1+(1.25+3.85i)T+(15.3+11.1i)T2 1 + (1.25 + 3.85i)T + (-15.3 + 11.1i)T^{2}
23 1+7.20iT23T2 1 + 7.20iT - 23T^{2}
29 1+(1.780.578i)T+(23.4+17.0i)T2 1 + (-1.78 - 0.578i)T + (23.4 + 17.0i)T^{2}
31 1+(0.545+0.751i)T+(9.57+29.4i)T2 1 + (0.545 + 0.751i)T + (-9.57 + 29.4i)T^{2}
37 1+(2.086.40i)T+(29.921.7i)T2 1 + (2.08 - 6.40i)T + (-29.9 - 21.7i)T^{2}
41 1+(3.961.28i)T+(33.124.0i)T2 1 + (3.96 - 1.28i)T + (33.1 - 24.0i)T^{2}
43 1+5.04T+43T2 1 + 5.04T + 43T^{2}
47 1+(8.50+2.76i)T+(38.027.6i)T2 1 + (-8.50 + 2.76i)T + (38.0 - 27.6i)T^{2}
53 1+(6.02+4.37i)T+(16.350.4i)T2 1 + (-6.02 + 4.37i)T + (16.3 - 50.4i)T^{2}
59 1+(11.13.63i)T+(47.7+34.6i)T2 1 + (-11.1 - 3.63i)T + (47.7 + 34.6i)T^{2}
61 1+(1.84+2.53i)T+(18.858.0i)T2 1 + (-1.84 + 2.53i)T + (-18.8 - 58.0i)T^{2}
67 1+11.6iT67T2 1 + 11.6iT - 67T^{2}
71 1+(7.6910.5i)T+(21.967.5i)T2 1 + (7.69 - 10.5i)T + (-21.9 - 67.5i)T^{2}
73 1+(7.42+2.41i)T+(59.0+42.9i)T2 1 + (7.42 + 2.41i)T + (59.0 + 42.9i)T^{2}
79 1+(3.962.88i)T+(24.475.1i)T2 1 + (3.96 - 2.88i)T + (24.4 - 75.1i)T^{2}
83 1+(2.822.05i)T+(25.6+78.9i)T2 1 + (-2.82 - 2.05i)T + (25.6 + 78.9i)T^{2}
89 14.08T+89T2 1 - 4.08T + 89T^{2}
97 1+(12.0+8.75i)T+(29.992.2i)T2 1 + (-12.0 + 8.75i)T + (29.9 - 92.2i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.87250293402601501564922460819, −11.86336410381016509867990708171, −10.35096565558050644678209629313, −8.853893103958396148266818526512, −8.375325644023398136072169008532, −7.35404997138492164983875170470, −6.60823978476092676391294750357, −4.77397112409260330968221995088, −3.85168176640926824190319936368, −2.41866844405229758441029428160, 2.19770431297163853221125012536, 3.32130574402360206839307107485, 4.22796137827155187892698610369, 5.65932232363909633408555937214, 7.16747016770166219517407273424, 8.675812665762617874096793976444, 9.187161928373647135536523553349, 10.20325136289352966408789711045, 11.46930108813690124170895233197, 11.96029278129249837027573865131

Graph of the ZZ-function along the critical line