L(s) = 1 | + (−0.117 − 1.40i)2-s + (−3.21 + 1.04i)3-s + (−1.97 + 0.331i)4-s + (−0.809 − 0.587i)5-s + (1.85 + 4.40i)6-s + (0.161 − 0.498i)7-s + (0.699 + 2.74i)8-s + (6.82 − 4.95i)9-s + (−0.733 + 1.20i)10-s + (2.73 + 1.87i)11-s + (5.99 − 3.12i)12-s + (2.22 + 3.06i)13-s + (−0.720 − 0.169i)14-s + (3.21 + 1.04i)15-s + (3.77 − 1.30i)16-s + (−1.63 + 2.25i)17-s + ⋯ |
L(s) = 1 | + (−0.0832 − 0.996i)2-s + (−1.85 + 0.603i)3-s + (−0.986 + 0.165i)4-s + (−0.361 − 0.262i)5-s + (0.755 + 1.79i)6-s + (0.0611 − 0.188i)7-s + (0.247 + 0.968i)8-s + (2.27 − 1.65i)9-s + (−0.231 + 0.382i)10-s + (0.824 + 0.566i)11-s + (1.73 − 0.902i)12-s + (0.617 + 0.850i)13-s + (−0.192 − 0.0452i)14-s + (0.830 + 0.269i)15-s + (0.944 − 0.327i)16-s + (−0.396 + 0.546i)17-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(0.998+0.0519i)Λ(2−s)
Λ(s)=(=(220s/2ΓC(s+1/2)L(s)(0.998+0.0519i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
0.998+0.0519i
|
Analytic conductor: |
1.75670 |
Root analytic conductor: |
1.32540 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(151,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :1/2), 0.998+0.0519i)
|
Particular Values
L(1) |
≈ |
0.545584−0.0141696i |
L(21) |
≈ |
0.545584−0.0141696i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.117+1.40i)T |
| 5 | 1+(0.809+0.587i)T |
| 11 | 1+(−2.73−1.87i)T |
good | 3 | 1+(3.21−1.04i)T+(2.42−1.76i)T2 |
| 7 | 1+(−0.161+0.498i)T+(−5.66−4.11i)T2 |
| 13 | 1+(−2.22−3.06i)T+(−4.01+12.3i)T2 |
| 17 | 1+(1.63−2.25i)T+(−5.25−16.1i)T2 |
| 19 | 1+(−0.531−1.63i)T+(−15.3+11.1i)T2 |
| 23 | 1+4.45iT−23T2 |
| 29 | 1+(−0.474−0.154i)T+(23.4+17.0i)T2 |
| 31 | 1+(−2.66−3.67i)T+(−9.57+29.4i)T2 |
| 37 | 1+(2.02−6.22i)T+(−29.9−21.7i)T2 |
| 41 | 1+(−3.86+1.25i)T+(33.1−24.0i)T2 |
| 43 | 1−9.72T+43T2 |
| 47 | 1+(−6.44+2.09i)T+(38.0−27.6i)T2 |
| 53 | 1+(0.379−0.275i)T+(16.3−50.4i)T2 |
| 59 | 1+(−0.529−0.171i)T+(47.7+34.6i)T2 |
| 61 | 1+(5.95−8.19i)T+(−18.8−58.0i)T2 |
| 67 | 1+1.46iT−67T2 |
| 71 | 1+(−0.730+1.00i)T+(−21.9−67.5i)T2 |
| 73 | 1+(−11.0−3.59i)T+(59.0+42.9i)T2 |
| 79 | 1+(9.67−7.03i)T+(24.4−75.1i)T2 |
| 83 | 1+(3.87+2.81i)T+(25.6+78.9i)T2 |
| 89 | 1+8.48T+89T2 |
| 97 | 1+(6.27−4.55i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.20345696734604545934112658212, −11.24784986971566703790743493647, −10.66474653197776598266150460673, −9.742302930679247548299818972177, −8.765778317532832774133368689802, −6.95876354563406317205406832482, −5.83917520223754224398247852484, −4.47284413233946156202622883800, −4.07479864383826568586626514992, −1.21566058457944414330949118946,
0.76432794432755225004382625438, 4.15526623749758918471848145352, 5.44987397624670148384597903742, 6.09034848005571224108906793457, 7.03091236259624572570681691002, 7.85305637370945157706109229257, 9.294422306003187781506311968479, 10.62811121830001015251533910620, 11.33990253877818077436958223463, 12.27381040993286656814231793140