L(s) = 1 | + (−0.117 − 1.40i)2-s + (−3.21 + 1.04i)3-s + (−1.97 + 0.331i)4-s + (−0.809 − 0.587i)5-s + (1.85 + 4.40i)6-s + (0.161 − 0.498i)7-s + (0.699 + 2.74i)8-s + (6.82 − 4.95i)9-s + (−0.733 + 1.20i)10-s + (2.73 + 1.87i)11-s + (5.99 − 3.12i)12-s + (2.22 + 3.06i)13-s + (−0.720 − 0.169i)14-s + (3.21 + 1.04i)15-s + (3.77 − 1.30i)16-s + (−1.63 + 2.25i)17-s + ⋯ |
L(s) = 1 | + (−0.0832 − 0.996i)2-s + (−1.85 + 0.603i)3-s + (−0.986 + 0.165i)4-s + (−0.361 − 0.262i)5-s + (0.755 + 1.79i)6-s + (0.0611 − 0.188i)7-s + (0.247 + 0.968i)8-s + (2.27 − 1.65i)9-s + (−0.231 + 0.382i)10-s + (0.824 + 0.566i)11-s + (1.73 − 0.902i)12-s + (0.617 + 0.850i)13-s + (−0.192 − 0.0452i)14-s + (0.830 + 0.269i)15-s + (0.944 − 0.327i)16-s + (−0.396 + 0.546i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0519i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.998 + 0.0519i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.545584 - 0.0141696i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.545584 - 0.0141696i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.117 + 1.40i)T \) |
| 5 | \( 1 + (0.809 + 0.587i)T \) |
| 11 | \( 1 + (-2.73 - 1.87i)T \) |
good | 3 | \( 1 + (3.21 - 1.04i)T + (2.42 - 1.76i)T^{2} \) |
| 7 | \( 1 + (-0.161 + 0.498i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-2.22 - 3.06i)T + (-4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (1.63 - 2.25i)T + (-5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.531 - 1.63i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 4.45iT - 23T^{2} \) |
| 29 | \( 1 + (-0.474 - 0.154i)T + (23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-2.66 - 3.67i)T + (-9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (2.02 - 6.22i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-3.86 + 1.25i)T + (33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 9.72T + 43T^{2} \) |
| 47 | \( 1 + (-6.44 + 2.09i)T + (38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (0.379 - 0.275i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.529 - 0.171i)T + (47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (5.95 - 8.19i)T + (-18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 1.46iT - 67T^{2} \) |
| 71 | \( 1 + (-0.730 + 1.00i)T + (-21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-11.0 - 3.59i)T + (59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (9.67 - 7.03i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (3.87 + 2.81i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 8.48T + 89T^{2} \) |
| 97 | \( 1 + (6.27 - 4.55i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.20345696734604545934112658212, −11.24784986971566703790743493647, −10.66474653197776598266150460673, −9.742302930679247548299818972177, −8.765778317532832774133368689802, −6.95876354563406317205406832482, −5.83917520223754224398247852484, −4.47284413233946156202622883800, −4.07479864383826568586626514992, −1.21566058457944414330949118946,
0.76432794432755225004382625438, 4.15526623749758918471848145352, 5.44987397624670148384597903742, 6.09034848005571224108906793457, 7.03091236259624572570681691002, 7.85305637370945157706109229257, 9.294422306003187781506311968479, 10.62811121830001015251533910620, 11.33990253877818077436958223463, 12.27381040993286656814231793140