L(s) = 1 | + (1.25 + 0.659i)2-s + (0.260 + 0.0846i)3-s + (1.13 + 1.64i)4-s + (−0.809 + 0.587i)5-s + (0.269 + 0.277i)6-s + (0.560 + 1.72i)7-s + (0.326 + 2.80i)8-s + (−2.36 − 1.71i)9-s + (−1.39 + 0.201i)10-s + (2.57 + 2.08i)11-s + (0.154 + 0.525i)12-s + (2.98 − 4.10i)13-s + (−0.436 + 2.52i)14-s + (−0.260 + 0.0846i)15-s + (−1.44 + 3.73i)16-s + (−2.63 − 3.62i)17-s + ⋯ |
L(s) = 1 | + (0.884 + 0.466i)2-s + (0.150 + 0.0488i)3-s + (0.565 + 0.824i)4-s + (−0.361 + 0.262i)5-s + (0.110 + 0.113i)6-s + (0.211 + 0.651i)7-s + (0.115 + 0.993i)8-s + (−0.788 − 0.573i)9-s + (−0.442 + 0.0638i)10-s + (0.777 + 0.628i)11-s + (0.0446 + 0.151i)12-s + (0.826 − 1.13i)13-s + (−0.116 + 0.675i)14-s + (−0.0672 + 0.0218i)15-s + (−0.361 + 0.932i)16-s + (−0.638 − 0.878i)17-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(0.446−0.894i)Λ(2−s)
Λ(s)=(=(220s/2ΓC(s+1/2)L(s)(0.446−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
0.446−0.894i
|
Analytic conductor: |
1.75670 |
Root analytic conductor: |
1.32540 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(51,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :1/2), 0.446−0.894i)
|
Particular Values
L(1) |
≈ |
1.65939+1.02688i |
L(21) |
≈ |
1.65939+1.02688i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.25−0.659i)T |
| 5 | 1+(0.809−0.587i)T |
| 11 | 1+(−2.57−2.08i)T |
good | 3 | 1+(−0.260−0.0846i)T+(2.42+1.76i)T2 |
| 7 | 1+(−0.560−1.72i)T+(−5.66+4.11i)T2 |
| 13 | 1+(−2.98+4.10i)T+(−4.01−12.3i)T2 |
| 17 | 1+(2.63+3.62i)T+(−5.25+16.1i)T2 |
| 19 | 1+(−0.882+2.71i)T+(−15.3−11.1i)T2 |
| 23 | 1+0.353iT−23T2 |
| 29 | 1+(3.78−1.23i)T+(23.4−17.0i)T2 |
| 31 | 1+(−0.598+0.823i)T+(−9.57−29.4i)T2 |
| 37 | 1+(1.34+4.14i)T+(−29.9+21.7i)T2 |
| 41 | 1+(−3.62−1.17i)T+(33.1+24.0i)T2 |
| 43 | 1+11.9T+43T2 |
| 47 | 1+(−10.2−3.33i)T+(38.0+27.6i)T2 |
| 53 | 1+(4.99+3.62i)T+(16.3+50.4i)T2 |
| 59 | 1+(9.49−3.08i)T+(47.7−34.6i)T2 |
| 61 | 1+(−7.97−10.9i)T+(−18.8+58.0i)T2 |
| 67 | 1+12.6iT−67T2 |
| 71 | 1+(−1.91−2.63i)T+(−21.9+67.5i)T2 |
| 73 | 1+(1.42−0.463i)T+(59.0−42.9i)T2 |
| 79 | 1+(−10.3−7.53i)T+(24.4+75.1i)T2 |
| 83 | 1+(8.34−6.06i)T+(25.6−78.9i)T2 |
| 89 | 1+1.53T+89T2 |
| 97 | 1+(6.18+4.49i)T+(29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.44577980052329479530836231802, −11.66985993888688313984734181253, −10.96762955792088112208003628844, −9.232018292442012515169845979086, −8.404207001207297295923907706367, −7.24291256864793866757943970797, −6.21086329562625137044824442421, −5.18522500088263977453871355809, −3.79913737038140130758222057957, −2.67660069987443737981825012533,
1.66012849052636055620186476570, 3.53070058255571875370886638314, 4.36692741522658801330528594410, 5.78203634051181266189329167156, 6.77314819783482800974989278855, 8.179447643466625187645474077777, 9.187454769551471860805920017183, 10.63320319370674703827999592745, 11.28832280858181430976383323980, 11.98368925734759327139776405396