L(s) = 1 | + (1.25 + 0.659i)2-s + (0.260 + 0.0846i)3-s + (1.13 + 1.64i)4-s + (−0.809 + 0.587i)5-s + (0.269 + 0.277i)6-s + (0.560 + 1.72i)7-s + (0.326 + 2.80i)8-s + (−2.36 − 1.71i)9-s + (−1.39 + 0.201i)10-s + (2.57 + 2.08i)11-s + (0.154 + 0.525i)12-s + (2.98 − 4.10i)13-s + (−0.436 + 2.52i)14-s + (−0.260 + 0.0846i)15-s + (−1.44 + 3.73i)16-s + (−2.63 − 3.62i)17-s + ⋯ |
L(s) = 1 | + (0.884 + 0.466i)2-s + (0.150 + 0.0488i)3-s + (0.565 + 0.824i)4-s + (−0.361 + 0.262i)5-s + (0.110 + 0.113i)6-s + (0.211 + 0.651i)7-s + (0.115 + 0.993i)8-s + (−0.788 − 0.573i)9-s + (−0.442 + 0.0638i)10-s + (0.777 + 0.628i)11-s + (0.0446 + 0.151i)12-s + (0.826 − 1.13i)13-s + (−0.116 + 0.675i)14-s + (−0.0672 + 0.0218i)15-s + (−0.361 + 0.932i)16-s + (−0.638 − 0.878i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.446 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.446 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.65939 + 1.02688i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.65939 + 1.02688i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.25 - 0.659i)T \) |
| 5 | \( 1 + (0.809 - 0.587i)T \) |
| 11 | \( 1 + (-2.57 - 2.08i)T \) |
good | 3 | \( 1 + (-0.260 - 0.0846i)T + (2.42 + 1.76i)T^{2} \) |
| 7 | \( 1 + (-0.560 - 1.72i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-2.98 + 4.10i)T + (-4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (2.63 + 3.62i)T + (-5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.882 + 2.71i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + 0.353iT - 23T^{2} \) |
| 29 | \( 1 + (3.78 - 1.23i)T + (23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-0.598 + 0.823i)T + (-9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (1.34 + 4.14i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-3.62 - 1.17i)T + (33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 11.9T + 43T^{2} \) |
| 47 | \( 1 + (-10.2 - 3.33i)T + (38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (4.99 + 3.62i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (9.49 - 3.08i)T + (47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-7.97 - 10.9i)T + (-18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 12.6iT - 67T^{2} \) |
| 71 | \( 1 + (-1.91 - 2.63i)T + (-21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (1.42 - 0.463i)T + (59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-10.3 - 7.53i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (8.34 - 6.06i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 1.53T + 89T^{2} \) |
| 97 | \( 1 + (6.18 + 4.49i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.44577980052329479530836231802, −11.66985993888688313984734181253, −10.96762955792088112208003628844, −9.232018292442012515169845979086, −8.404207001207297295923907706367, −7.24291256864793866757943970797, −6.21086329562625137044824442421, −5.18522500088263977453871355809, −3.79913737038140130758222057957, −2.67660069987443737981825012533,
1.66012849052636055620186476570, 3.53070058255571875370886638314, 4.36692741522658801330528594410, 5.78203634051181266189329167156, 6.77314819783482800974989278855, 8.179447643466625187645474077777, 9.187454769551471860805920017183, 10.63320319370674703827999592745, 11.28832280858181430976383323980, 11.98368925734759327139776405396