L(s) = 1 | + (0.432 + 1.34i)2-s + (2.09 + 0.680i)3-s + (−1.62 + 1.16i)4-s + (−0.809 + 0.587i)5-s + (−0.0101 + 3.11i)6-s + (0.548 + 1.68i)7-s + (−2.27 − 1.68i)8-s + (1.49 + 1.08i)9-s + (−1.14 − 0.834i)10-s + (−0.218 − 3.30i)11-s + (−4.19 + 1.33i)12-s + (0.368 − 0.506i)13-s + (−2.03 + 1.46i)14-s + (−2.09 + 0.680i)15-s + (1.28 − 3.78i)16-s + (4.68 + 6.44i)17-s + ⋯ |
L(s) = 1 | + (0.305 + 0.952i)2-s + (1.20 + 0.392i)3-s + (−0.812 + 0.582i)4-s + (−0.361 + 0.262i)5-s + (−0.00413 + 1.27i)6-s + (0.207 + 0.638i)7-s + (−0.803 − 0.595i)8-s + (0.499 + 0.362i)9-s + (−0.360 − 0.264i)10-s + (−0.0659 − 0.997i)11-s + (−1.21 + 0.385i)12-s + (0.102 − 0.140i)13-s + (−0.544 + 0.392i)14-s + (−0.540 + 0.175i)15-s + (0.321 − 0.946i)16-s + (1.13 + 1.56i)17-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(−0.299−0.954i)Λ(2−s)
Λ(s)=(=(220s/2ΓC(s+1/2)L(s)(−0.299−0.954i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
−0.299−0.954i
|
Analytic conductor: |
1.75670 |
Root analytic conductor: |
1.32540 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(51,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :1/2), −0.299−0.954i)
|
Particular Values
L(1) |
≈ |
1.03471+1.40923i |
L(21) |
≈ |
1.03471+1.40923i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.432−1.34i)T |
| 5 | 1+(0.809−0.587i)T |
| 11 | 1+(0.218+3.30i)T |
good | 3 | 1+(−2.09−0.680i)T+(2.42+1.76i)T2 |
| 7 | 1+(−0.548−1.68i)T+(−5.66+4.11i)T2 |
| 13 | 1+(−0.368+0.506i)T+(−4.01−12.3i)T2 |
| 17 | 1+(−4.68−6.44i)T+(−5.25+16.1i)T2 |
| 19 | 1+(−1.50+4.62i)T+(−15.3−11.1i)T2 |
| 23 | 1+4.01iT−23T2 |
| 29 | 1+(0.923−0.300i)T+(23.4−17.0i)T2 |
| 31 | 1+(2.21−3.05i)T+(−9.57−29.4i)T2 |
| 37 | 1+(−1.35−4.18i)T+(−29.9+21.7i)T2 |
| 41 | 1+(7.91+2.57i)T+(33.1+24.0i)T2 |
| 43 | 1−8.42T+43T2 |
| 47 | 1+(7.43+2.41i)T+(38.0+27.6i)T2 |
| 53 | 1+(7.51+5.45i)T+(16.3+50.4i)T2 |
| 59 | 1+(2.45−0.798i)T+(47.7−34.6i)T2 |
| 61 | 1+(−5.77−7.95i)T+(−18.8+58.0i)T2 |
| 67 | 1+7.43iT−67T2 |
| 71 | 1+(1.04+1.44i)T+(−21.9+67.5i)T2 |
| 73 | 1+(3.83−1.24i)T+(59.0−42.9i)T2 |
| 79 | 1+(−2.58−1.87i)T+(24.4+75.1i)T2 |
| 83 | 1+(−6.14+4.46i)T+(25.6−78.9i)T2 |
| 89 | 1+6.28T+89T2 |
| 97 | 1+(−4.44−3.23i)T+(29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.89117515523684017696166346025, −11.81410661661471810520689903636, −10.43070376746651034797880349017, −9.167937270078684718505649841779, −8.440818045531642945773951962863, −7.901773788496898132070206740206, −6.46389027198463492098946901758, −5.31330648831270028557240673714, −3.82589693985355234562729882435, −2.98034603420950913926048711534,
1.55274375126064292882190770778, 3.01524094365817335754302515676, 4.07371838323940531584049554323, 5.34912237688308720129445841938, 7.37668480590789113062344254689, 7.996366551439850715092230136532, 9.339235515811333709269799791263, 9.843640272701536646224709124777, 11.19904516796628647829935799774, 12.13240812128749095083176541770