L(s) = 1 | + (0.432 + 1.34i)2-s + (2.09 + 0.680i)3-s + (−1.62 + 1.16i)4-s + (−0.809 + 0.587i)5-s + (−0.0101 + 3.11i)6-s + (0.548 + 1.68i)7-s + (−2.27 − 1.68i)8-s + (1.49 + 1.08i)9-s + (−1.14 − 0.834i)10-s + (−0.218 − 3.30i)11-s + (−4.19 + 1.33i)12-s + (0.368 − 0.506i)13-s + (−2.03 + 1.46i)14-s + (−2.09 + 0.680i)15-s + (1.28 − 3.78i)16-s + (4.68 + 6.44i)17-s + ⋯ |
L(s) = 1 | + (0.305 + 0.952i)2-s + (1.20 + 0.392i)3-s + (−0.812 + 0.582i)4-s + (−0.361 + 0.262i)5-s + (−0.00413 + 1.27i)6-s + (0.207 + 0.638i)7-s + (−0.803 − 0.595i)8-s + (0.499 + 0.362i)9-s + (−0.360 − 0.264i)10-s + (−0.0659 − 0.997i)11-s + (−1.21 + 0.385i)12-s + (0.102 − 0.140i)13-s + (−0.544 + 0.392i)14-s + (−0.540 + 0.175i)15-s + (0.321 − 0.946i)16-s + (1.13 + 1.56i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.299 - 0.954i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.299 - 0.954i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.03471 + 1.40923i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.03471 + 1.40923i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.432 - 1.34i)T \) |
| 5 | \( 1 + (0.809 - 0.587i)T \) |
| 11 | \( 1 + (0.218 + 3.30i)T \) |
good | 3 | \( 1 + (-2.09 - 0.680i)T + (2.42 + 1.76i)T^{2} \) |
| 7 | \( 1 + (-0.548 - 1.68i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-0.368 + 0.506i)T + (-4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-4.68 - 6.44i)T + (-5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-1.50 + 4.62i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + 4.01iT - 23T^{2} \) |
| 29 | \( 1 + (0.923 - 0.300i)T + (23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (2.21 - 3.05i)T + (-9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-1.35 - 4.18i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (7.91 + 2.57i)T + (33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 8.42T + 43T^{2} \) |
| 47 | \( 1 + (7.43 + 2.41i)T + (38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (7.51 + 5.45i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (2.45 - 0.798i)T + (47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-5.77 - 7.95i)T + (-18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 7.43iT - 67T^{2} \) |
| 71 | \( 1 + (1.04 + 1.44i)T + (-21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (3.83 - 1.24i)T + (59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-2.58 - 1.87i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-6.14 + 4.46i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 6.28T + 89T^{2} \) |
| 97 | \( 1 + (-4.44 - 3.23i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.89117515523684017696166346025, −11.81410661661471810520689903636, −10.43070376746651034797880349017, −9.167937270078684718505649841779, −8.440818045531642945773951962863, −7.901773788496898132070206740206, −6.46389027198463492098946901758, −5.31330648831270028557240673714, −3.82589693985355234562729882435, −2.98034603420950913926048711534,
1.55274375126064292882190770778, 3.01524094365817335754302515676, 4.07371838323940531584049554323, 5.34912237688308720129445841938, 7.37668480590789113062344254689, 7.996366551439850715092230136532, 9.339235515811333709269799791263, 9.843640272701536646224709124777, 11.19904516796628647829935799774, 12.13240812128749095083176541770