L(s) = 1 | + (−0.464 + 0.0735i)3-s + (−0.794 − 2.09i)5-s + (0.413 − 2.61i)7-s + (−2.64 + 0.858i)9-s + (1.70 − 2.84i)11-s + (0.780 − 1.53i)13-s + (0.522 + 0.911i)15-s + (−1.07 − 2.11i)17-s + (2.28 + 1.65i)19-s + 1.24i·21-s + (4.09 − 4.09i)23-s + (−3.73 + 3.31i)25-s + (2.41 − 1.23i)27-s + (−1.79 + 1.30i)29-s + (1.63 + 5.02i)31-s + ⋯ |
L(s) = 1 | + (−0.267 + 0.0424i)3-s + (−0.355 − 0.934i)5-s + (0.156 − 0.987i)7-s + (−0.881 + 0.286i)9-s + (0.514 − 0.857i)11-s + (0.216 − 0.425i)13-s + (0.134 + 0.235i)15-s + (−0.261 − 0.512i)17-s + (0.523 + 0.380i)19-s + 0.271i·21-s + (0.854 − 0.854i)23-s + (−0.747 + 0.663i)25-s + (0.465 − 0.237i)27-s + (−0.333 + 0.242i)29-s + (0.293 + 0.902i)31-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(0.0835+0.996i)Λ(2−s)
Λ(s)=(=(220s/2ΓC(s+1/2)L(s)(0.0835+0.996i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
0.0835+0.996i
|
Analytic conductor: |
1.75670 |
Root analytic conductor: |
1.32540 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :1/2), 0.0835+0.996i)
|
Particular Values
L(1) |
≈ |
0.703051−0.646564i |
L(21) |
≈ |
0.703051−0.646564i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.794+2.09i)T |
| 11 | 1+(−1.70+2.84i)T |
good | 3 | 1+(0.464−0.0735i)T+(2.85−0.927i)T2 |
| 7 | 1+(−0.413+2.61i)T+(−6.65−2.16i)T2 |
| 13 | 1+(−0.780+1.53i)T+(−7.64−10.5i)T2 |
| 17 | 1+(1.07+2.11i)T+(−9.99+13.7i)T2 |
| 19 | 1+(−2.28−1.65i)T+(5.87+18.0i)T2 |
| 23 | 1+(−4.09+4.09i)T−23iT2 |
| 29 | 1+(1.79−1.30i)T+(8.96−27.5i)T2 |
| 31 | 1+(−1.63−5.02i)T+(−25.0+18.2i)T2 |
| 37 | 1+(2.56+0.405i)T+(35.1+11.4i)T2 |
| 41 | 1+(6.37−8.77i)T+(−12.6−38.9i)T2 |
| 43 | 1+(−4.89−4.89i)T+43iT2 |
| 47 | 1+(1.64+10.3i)T+(−44.6+14.5i)T2 |
| 53 | 1+(−8.77−4.47i)T+(31.1+42.8i)T2 |
| 59 | 1+(2.11+2.91i)T+(−18.2+56.1i)T2 |
| 61 | 1+(−11.5−3.74i)T+(49.3+35.8i)T2 |
| 67 | 1+(−4.30−4.30i)T+67iT2 |
| 71 | 1+(−0.522+1.60i)T+(−57.4−41.7i)T2 |
| 73 | 1+(14.3+2.26i)T+(69.4+22.5i)T2 |
| 79 | 1+(−2.50−7.70i)T+(−63.9+46.4i)T2 |
| 83 | 1+(−8.02+4.08i)T+(48.7−67.1i)T2 |
| 89 | 1+11.6iT−89T2 |
| 97 | 1+(−4.57+8.98i)T+(−57.0−78.4i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.88030139421175968245246995455, −11.22726323914039347087210890372, −10.26697157388226112337651021005, −8.878224108543834864043430315927, −8.256784215194765479596499415808, −7.02579269026141870343419094597, −5.66343233663628813772758264111, −4.66130832598507651984754492008, −3.33225061927011388659344795072, −0.870204952360649524822876012924,
2.34687084713542113902114177822, 3.74332503405092731026501853295, 5.35524377818991351005875694975, 6.39850607150078339014216549156, 7.35730665364908957588931754895, 8.671483962914801097433431428057, 9.510950576869478702914700234533, 10.82098477091492432930647260677, 11.66258090136669461476022735014, 12.11577928268090652344505823893