L(s) = 1 | + (−0.464 + 0.0735i)3-s + (−0.794 − 2.09i)5-s + (0.413 − 2.61i)7-s + (−2.64 + 0.858i)9-s + (1.70 − 2.84i)11-s + (0.780 − 1.53i)13-s + (0.522 + 0.911i)15-s + (−1.07 − 2.11i)17-s + (2.28 + 1.65i)19-s + 1.24i·21-s + (4.09 − 4.09i)23-s + (−3.73 + 3.31i)25-s + (2.41 − 1.23i)27-s + (−1.79 + 1.30i)29-s + (1.63 + 5.02i)31-s + ⋯ |
L(s) = 1 | + (−0.267 + 0.0424i)3-s + (−0.355 − 0.934i)5-s + (0.156 − 0.987i)7-s + (−0.881 + 0.286i)9-s + (0.514 − 0.857i)11-s + (0.216 − 0.425i)13-s + (0.134 + 0.235i)15-s + (−0.261 − 0.512i)17-s + (0.523 + 0.380i)19-s + 0.271i·21-s + (0.854 − 0.854i)23-s + (−0.747 + 0.663i)25-s + (0.465 − 0.237i)27-s + (−0.333 + 0.242i)29-s + (0.293 + 0.902i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0835 + 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0835 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.703051 - 0.646564i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.703051 - 0.646564i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.794 + 2.09i)T \) |
| 11 | \( 1 + (-1.70 + 2.84i)T \) |
good | 3 | \( 1 + (0.464 - 0.0735i)T + (2.85 - 0.927i)T^{2} \) |
| 7 | \( 1 + (-0.413 + 2.61i)T + (-6.65 - 2.16i)T^{2} \) |
| 13 | \( 1 + (-0.780 + 1.53i)T + (-7.64 - 10.5i)T^{2} \) |
| 17 | \( 1 + (1.07 + 2.11i)T + (-9.99 + 13.7i)T^{2} \) |
| 19 | \( 1 + (-2.28 - 1.65i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + (-4.09 + 4.09i)T - 23iT^{2} \) |
| 29 | \( 1 + (1.79 - 1.30i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (-1.63 - 5.02i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (2.56 + 0.405i)T + (35.1 + 11.4i)T^{2} \) |
| 41 | \( 1 + (6.37 - 8.77i)T + (-12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 + (-4.89 - 4.89i)T + 43iT^{2} \) |
| 47 | \( 1 + (1.64 + 10.3i)T + (-44.6 + 14.5i)T^{2} \) |
| 53 | \( 1 + (-8.77 - 4.47i)T + (31.1 + 42.8i)T^{2} \) |
| 59 | \( 1 + (2.11 + 2.91i)T + (-18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (-11.5 - 3.74i)T + (49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 + (-4.30 - 4.30i)T + 67iT^{2} \) |
| 71 | \( 1 + (-0.522 + 1.60i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (14.3 + 2.26i)T + (69.4 + 22.5i)T^{2} \) |
| 79 | \( 1 + (-2.50 - 7.70i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (-8.02 + 4.08i)T + (48.7 - 67.1i)T^{2} \) |
| 89 | \( 1 + 11.6iT - 89T^{2} \) |
| 97 | \( 1 + (-4.57 + 8.98i)T + (-57.0 - 78.4i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.88030139421175968245246995455, −11.22726323914039347087210890372, −10.26697157388226112337651021005, −8.878224108543834864043430315927, −8.256784215194765479596499415808, −7.02579269026141870343419094597, −5.66343233663628813772758264111, −4.66130832598507651984754492008, −3.33225061927011388659344795072, −0.870204952360649524822876012924,
2.34687084713542113902114177822, 3.74332503405092731026501853295, 5.35524377818991351005875694975, 6.39850607150078339014216549156, 7.35730665364908957588931754895, 8.671483962914801097433431428057, 9.510950576869478702914700234533, 10.82098477091492432930647260677, 11.66258090136669461476022735014, 12.11577928268090652344505823893