L(s) = 1 | + (−0.467 + 2.95i)3-s + (−0.111 + 2.23i)5-s + (2.35 − 0.372i)7-s + (−5.63 − 1.83i)9-s + (0.368 − 3.29i)11-s + (−4.91 + 2.50i)13-s + (−6.53 − 1.37i)15-s + (5.13 + 2.61i)17-s + (−2.00 + 1.45i)19-s + 7.11i·21-s + (4.85 − 4.85i)23-s + (−4.97 − 0.499i)25-s + (3.96 − 7.78i)27-s + (4.14 + 3.01i)29-s + (0.457 − 1.40i)31-s + ⋯ |
L(s) = 1 | + (−0.269 + 1.70i)3-s + (−0.0500 + 0.998i)5-s + (0.889 − 0.140i)7-s + (−1.87 − 0.610i)9-s + (0.111 − 0.993i)11-s + (−1.36 + 0.694i)13-s + (−1.68 − 0.354i)15-s + (1.24 + 0.634i)17-s + (−0.460 + 0.334i)19-s + 1.55i·21-s + (1.01 − 1.01i)23-s + (−0.994 − 0.0999i)25-s + (0.762 − 1.49i)27-s + (0.770 + 0.559i)29-s + (0.0821 − 0.252i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.632 - 0.774i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.632 - 0.774i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.472664 + 0.995593i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.472664 + 0.995593i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.111 - 2.23i)T \) |
| 11 | \( 1 + (-0.368 + 3.29i)T \) |
good | 3 | \( 1 + (0.467 - 2.95i)T + (-2.85 - 0.927i)T^{2} \) |
| 7 | \( 1 + (-2.35 + 0.372i)T + (6.65 - 2.16i)T^{2} \) |
| 13 | \( 1 + (4.91 - 2.50i)T + (7.64 - 10.5i)T^{2} \) |
| 17 | \( 1 + (-5.13 - 2.61i)T + (9.99 + 13.7i)T^{2} \) |
| 19 | \( 1 + (2.00 - 1.45i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + (-4.85 + 4.85i)T - 23iT^{2} \) |
| 29 | \( 1 + (-4.14 - 3.01i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (-0.457 + 1.40i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (0.103 + 0.654i)T + (-35.1 + 11.4i)T^{2} \) |
| 41 | \( 1 + (-0.176 - 0.242i)T + (-12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + (-6.73 - 6.73i)T + 43iT^{2} \) |
| 47 | \( 1 + (-7.46 - 1.18i)T + (44.6 + 14.5i)T^{2} \) |
| 53 | \( 1 + (0.877 + 1.72i)T + (-31.1 + 42.8i)T^{2} \) |
| 59 | \( 1 + (-0.419 + 0.576i)T + (-18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (-5.32 + 1.73i)T + (49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 + (6.03 + 6.03i)T + 67iT^{2} \) |
| 71 | \( 1 + (1.48 + 4.56i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (-0.311 - 1.96i)T + (-69.4 + 22.5i)T^{2} \) |
| 79 | \( 1 + (-2.20 + 6.79i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (0.000475 - 0.000934i)T + (-48.7 - 67.1i)T^{2} \) |
| 89 | \( 1 - 4.41iT - 89T^{2} \) |
| 97 | \( 1 + (7.94 - 4.05i)T + (57.0 - 78.4i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.25975165966916893169898226796, −11.27004657125575571835257821617, −10.68494472462660724429169994890, −9.993195851111424057436043227681, −8.921390793847294828500506837242, −7.76431224996133310476189314991, −6.28274525462595191127994662185, −5.10840908601421569395961569610, −4.11992434092538025913907161252, −2.91066225364259885643074043508,
1.04498458614905352770579623825, 2.37203406668290061412555987852, 4.85674927802972792129147083606, 5.60163590168205481018852504757, 7.26316351367758729295661453062, 7.61954850139093181639833430232, 8.686462829713609385039696736573, 9.929307734426621441948663210516, 11.48790785070983068499519380221, 12.23415660596411427188098462316