L(s) = 1 | + (−0.467 + 2.95i)3-s + (−0.111 + 2.23i)5-s + (2.35 − 0.372i)7-s + (−5.63 − 1.83i)9-s + (0.368 − 3.29i)11-s + (−4.91 + 2.50i)13-s + (−6.53 − 1.37i)15-s + (5.13 + 2.61i)17-s + (−2.00 + 1.45i)19-s + 7.11i·21-s + (4.85 − 4.85i)23-s + (−4.97 − 0.499i)25-s + (3.96 − 7.78i)27-s + (4.14 + 3.01i)29-s + (0.457 − 1.40i)31-s + ⋯ |
L(s) = 1 | + (−0.269 + 1.70i)3-s + (−0.0500 + 0.998i)5-s + (0.889 − 0.140i)7-s + (−1.87 − 0.610i)9-s + (0.111 − 0.993i)11-s + (−1.36 + 0.694i)13-s + (−1.68 − 0.354i)15-s + (1.24 + 0.634i)17-s + (−0.460 + 0.334i)19-s + 1.55i·21-s + (1.01 − 1.01i)23-s + (−0.994 − 0.0999i)25-s + (0.762 − 1.49i)27-s + (0.770 + 0.559i)29-s + (0.0821 − 0.252i)31-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(−0.632−0.774i)Λ(2−s)
Λ(s)=(=(220s/2ΓC(s+1/2)L(s)(−0.632−0.774i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
−0.632−0.774i
|
Analytic conductor: |
1.75670 |
Root analytic conductor: |
1.32540 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(57,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :1/2), −0.632−0.774i)
|
Particular Values
L(1) |
≈ |
0.472664+0.995593i |
L(21) |
≈ |
0.472664+0.995593i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.111−2.23i)T |
| 11 | 1+(−0.368+3.29i)T |
good | 3 | 1+(0.467−2.95i)T+(−2.85−0.927i)T2 |
| 7 | 1+(−2.35+0.372i)T+(6.65−2.16i)T2 |
| 13 | 1+(4.91−2.50i)T+(7.64−10.5i)T2 |
| 17 | 1+(−5.13−2.61i)T+(9.99+13.7i)T2 |
| 19 | 1+(2.00−1.45i)T+(5.87−18.0i)T2 |
| 23 | 1+(−4.85+4.85i)T−23iT2 |
| 29 | 1+(−4.14−3.01i)T+(8.96+27.5i)T2 |
| 31 | 1+(−0.457+1.40i)T+(−25.0−18.2i)T2 |
| 37 | 1+(0.103+0.654i)T+(−35.1+11.4i)T2 |
| 41 | 1+(−0.176−0.242i)T+(−12.6+38.9i)T2 |
| 43 | 1+(−6.73−6.73i)T+43iT2 |
| 47 | 1+(−7.46−1.18i)T+(44.6+14.5i)T2 |
| 53 | 1+(0.877+1.72i)T+(−31.1+42.8i)T2 |
| 59 | 1+(−0.419+0.576i)T+(−18.2−56.1i)T2 |
| 61 | 1+(−5.32+1.73i)T+(49.3−35.8i)T2 |
| 67 | 1+(6.03+6.03i)T+67iT2 |
| 71 | 1+(1.48+4.56i)T+(−57.4+41.7i)T2 |
| 73 | 1+(−0.311−1.96i)T+(−69.4+22.5i)T2 |
| 79 | 1+(−2.20+6.79i)T+(−63.9−46.4i)T2 |
| 83 | 1+(0.000475−0.000934i)T+(−48.7−67.1i)T2 |
| 89 | 1−4.41iT−89T2 |
| 97 | 1+(7.94−4.05i)T+(57.0−78.4i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.25975165966916893169898226796, −11.27004657125575571835257821617, −10.68494472462660724429169994890, −9.993195851111424057436043227681, −8.921390793847294828500506837242, −7.76431224996133310476189314991, −6.28274525462595191127994662185, −5.10840908601421569395961569610, −4.11992434092538025913907161252, −2.91066225364259885643074043508,
1.04498458614905352770579623825, 2.37203406668290061412555987852, 4.85674927802972792129147083606, 5.60163590168205481018852504757, 7.26316351367758729295661453062, 7.61954850139093181639833430232, 8.686462829713609385039696736573, 9.929307734426621441948663210516, 11.48790785070983068499519380221, 12.23415660596411427188098462316