L(s) = 1 | + (−0.274 − 1.98i)2-s + 4.52i·3-s + (−3.84 + 1.08i)4-s + 2.23·5-s + (8.96 − 1.24i)6-s + 1.58i·7-s + (3.21 + 7.32i)8-s − 11.5·9-s + (−0.614 − 4.42i)10-s + 3.31i·11-s + (−4.92 − 17.4i)12-s − 18.2·13-s + (3.13 − 0.435i)14-s + 10.1i·15-s + (13.6 − 8.37i)16-s − 13.8·17-s + ⋯ |
L(s) = 1 | + (−0.137 − 0.990i)2-s + 1.50i·3-s + (−0.962 + 0.272i)4-s + 0.447·5-s + (1.49 − 0.207i)6-s + 0.226i·7-s + (0.401 + 0.915i)8-s − 1.27·9-s + (−0.0614 − 0.442i)10-s + 0.301i·11-s + (−0.410 − 1.45i)12-s − 1.40·13-s + (0.224 − 0.0310i)14-s + 0.674i·15-s + (0.851 − 0.523i)16-s − 0.812·17-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(−0.272−0.962i)Λ(3−s)
Λ(s)=(=(220s/2ΓC(s+1)L(s)(−0.272−0.962i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
−0.272−0.962i
|
Analytic conductor: |
5.99456 |
Root analytic conductor: |
2.44838 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(111,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :1), −0.272−0.962i)
|
Particular Values
L(23) |
≈ |
0.560355+0.740728i |
L(21) |
≈ |
0.560355+0.740728i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.274+1.98i)T |
| 5 | 1−2.23T |
| 11 | 1−3.31iT |
good | 3 | 1−4.52iT−9T2 |
| 7 | 1−1.58iT−49T2 |
| 13 | 1+18.2T+169T2 |
| 17 | 1+13.8T+289T2 |
| 19 | 1−13.5iT−361T2 |
| 23 | 1−34.1iT−529T2 |
| 29 | 1+26.1T+841T2 |
| 31 | 1+0.621iT−961T2 |
| 37 | 1−9.06T+1.36e3T2 |
| 41 | 1−42.3T+1.68e3T2 |
| 43 | 1+30.1iT−1.84e3T2 |
| 47 | 1−46.6iT−2.20e3T2 |
| 53 | 1−23.6T+2.80e3T2 |
| 59 | 1+88.7iT−3.48e3T2 |
| 61 | 1+49.4T+3.72e3T2 |
| 67 | 1−113.iT−4.48e3T2 |
| 71 | 1+55.1iT−5.04e3T2 |
| 73 | 1−123.T+5.32e3T2 |
| 79 | 1+0.962iT−6.24e3T2 |
| 83 | 1+29.6iT−6.88e3T2 |
| 89 | 1−57.8T+7.92e3T2 |
| 97 | 1−176.T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.10593033707531486751808310456, −11.15482660305551638630050681352, −10.30852787813709582729028037547, −9.536173041467879644053923389518, −9.118909497586796520655673450335, −7.62740354676652230694999969494, −5.57042785822574050414123430937, −4.70381782630483524903859654710, −3.64897944556010362159131349432, −2.25465511172402584606429050934,
0.52159366675445576672225233581, 2.34525410928129014421702066457, 4.63512502307635427719142864183, 5.93046829357846517725596740504, 6.84664042393251876099231655440, 7.45313528173887018331174366682, 8.511609903474244077840652835264, 9.485655237450933201638279510181, 10.76046335357918835823065072114, 12.19443227425325026789536697200