L(s) = 1 | + (−0.274 − 1.98i)2-s + 4.52i·3-s + (−3.84 + 1.08i)4-s + 2.23·5-s + (8.96 − 1.24i)6-s + 1.58i·7-s + (3.21 + 7.32i)8-s − 11.5·9-s + (−0.614 − 4.42i)10-s + 3.31i·11-s + (−4.92 − 17.4i)12-s − 18.2·13-s + (3.13 − 0.435i)14-s + 10.1i·15-s + (13.6 − 8.37i)16-s − 13.8·17-s + ⋯ |
L(s) = 1 | + (−0.137 − 0.990i)2-s + 1.50i·3-s + (−0.962 + 0.272i)4-s + 0.447·5-s + (1.49 − 0.207i)6-s + 0.226i·7-s + (0.401 + 0.915i)8-s − 1.27·9-s + (−0.0614 − 0.442i)10-s + 0.301i·11-s + (−0.410 − 1.45i)12-s − 1.40·13-s + (0.224 − 0.0310i)14-s + 0.674i·15-s + (0.851 − 0.523i)16-s − 0.812·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.272 - 0.962i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.272 - 0.962i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.560355 + 0.740728i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.560355 + 0.740728i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.274 + 1.98i)T \) |
| 5 | \( 1 - 2.23T \) |
| 11 | \( 1 - 3.31iT \) |
good | 3 | \( 1 - 4.52iT - 9T^{2} \) |
| 7 | \( 1 - 1.58iT - 49T^{2} \) |
| 13 | \( 1 + 18.2T + 169T^{2} \) |
| 17 | \( 1 + 13.8T + 289T^{2} \) |
| 19 | \( 1 - 13.5iT - 361T^{2} \) |
| 23 | \( 1 - 34.1iT - 529T^{2} \) |
| 29 | \( 1 + 26.1T + 841T^{2} \) |
| 31 | \( 1 + 0.621iT - 961T^{2} \) |
| 37 | \( 1 - 9.06T + 1.36e3T^{2} \) |
| 41 | \( 1 - 42.3T + 1.68e3T^{2} \) |
| 43 | \( 1 + 30.1iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 46.6iT - 2.20e3T^{2} \) |
| 53 | \( 1 - 23.6T + 2.80e3T^{2} \) |
| 59 | \( 1 + 88.7iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 49.4T + 3.72e3T^{2} \) |
| 67 | \( 1 - 113. iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 55.1iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 123.T + 5.32e3T^{2} \) |
| 79 | \( 1 + 0.962iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 29.6iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 57.8T + 7.92e3T^{2} \) |
| 97 | \( 1 - 176.T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.10593033707531486751808310456, −11.15482660305551638630050681352, −10.30852787813709582729028037547, −9.536173041467879644053923389518, −9.118909497586796520655673450335, −7.62740354676652230694999969494, −5.57042785822574050414123430937, −4.70381782630483524903859654710, −3.64897944556010362159131349432, −2.25465511172402584606429050934,
0.52159366675445576672225233581, 2.34525410928129014421702066457, 4.63512502307635427719142864183, 5.93046829357846517725596740504, 6.84664042393251876099231655440, 7.45313528173887018331174366682, 8.511609903474244077840652835264, 9.485655237450933201638279510181, 10.76046335357918835823065072114, 12.19443227425325026789536697200