L(s) = 1 | + (−0.00238 − 1.99i)2-s − 5.13i·3-s + (−3.99 + 0.00955i)4-s − 2.23·5-s + (−10.2 + 0.0122i)6-s + 6.37i·7-s + (0.0286 + 7.99i)8-s − 17.3·9-s + (0.00533 + 4.47i)10-s − 3.31i·11-s + (0.0490 + 20.5i)12-s − 1.30·13-s + (12.7 − 0.0152i)14-s + 11.4i·15-s + (15.9 − 0.0764i)16-s − 24.9·17-s + ⋯ |
L(s) = 1 | + (−0.00119 − 0.999i)2-s − 1.71i·3-s + (−0.999 + 0.00238i)4-s − 0.447·5-s + (−1.71 + 0.00204i)6-s + 0.911i·7-s + (0.00358 + 0.999i)8-s − 1.92·9-s + (0.000533 + 0.447i)10-s − 0.301i·11-s + (0.00408 + 1.71i)12-s − 0.100·13-s + (0.911 − 0.00108i)14-s + 0.765i·15-s + (0.999 − 0.00477i)16-s − 1.46·17-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(−0.00238−0.999i)Λ(3−s)
Λ(s)=(=(220s/2ΓC(s+1)L(s)(−0.00238−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
−0.00238−0.999i
|
Analytic conductor: |
5.99456 |
Root analytic conductor: |
2.44838 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(111,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :1), −0.00238−0.999i)
|
Particular Values
L(23) |
≈ |
0.359678+0.360538i |
L(21) |
≈ |
0.359678+0.360538i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.00238+1.99i)T |
| 5 | 1+2.23T |
| 11 | 1+3.31iT |
good | 3 | 1+5.13iT−9T2 |
| 7 | 1−6.37iT−49T2 |
| 13 | 1+1.30T+169T2 |
| 17 | 1+24.9T+289T2 |
| 19 | 1+29.5iT−361T2 |
| 23 | 1+4.05iT−529T2 |
| 29 | 1+6.14T+841T2 |
| 31 | 1−16.6iT−961T2 |
| 37 | 1+11.3T+1.36e3T2 |
| 41 | 1+46.1T+1.68e3T2 |
| 43 | 1+51.0iT−1.84e3T2 |
| 47 | 1−74.9iT−2.20e3T2 |
| 53 | 1+52.6T+2.80e3T2 |
| 59 | 1+11.6iT−3.48e3T2 |
| 61 | 1−62.5T+3.72e3T2 |
| 67 | 1−49.7iT−4.48e3T2 |
| 71 | 1+132.iT−5.04e3T2 |
| 73 | 1+113.T+5.32e3T2 |
| 79 | 1+144.iT−6.24e3T2 |
| 83 | 1+67.6iT−6.88e3T2 |
| 89 | 1−155.T+7.92e3T2 |
| 97 | 1−163.T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.61815384051976481170169391782, −10.83662427128112166005017928592, −9.007472313709219695901987548787, −8.581109872283463375857655090658, −7.34468208222787535723996621280, −6.23859186772818197063499473546, −4.86548648556205105436093575754, −2.94902107882452218126441279127, −1.95692677359588519435533378752, −0.27484814452698873027877878486,
3.70173936888732294773416110379, 4.29124969610334717819083466318, 5.30424949253546613414363734875, 6.66381905477249484998235442595, 7.917009508465619784516412199275, 8.860662321637006978316495303093, 9.873790091767117191972210169076, 10.46678357748583220625832211322, 11.58002733848919251756750290510, 13.04776186922666598459539412531