L(s) = 1 | + (−0.00238 − 1.99i)2-s − 5.13i·3-s + (−3.99 + 0.00955i)4-s − 2.23·5-s + (−10.2 + 0.0122i)6-s + 6.37i·7-s + (0.0286 + 7.99i)8-s − 17.3·9-s + (0.00533 + 4.47i)10-s − 3.31i·11-s + (0.0490 + 20.5i)12-s − 1.30·13-s + (12.7 − 0.0152i)14-s + 11.4i·15-s + (15.9 − 0.0764i)16-s − 24.9·17-s + ⋯ |
L(s) = 1 | + (−0.00119 − 0.999i)2-s − 1.71i·3-s + (−0.999 + 0.00238i)4-s − 0.447·5-s + (−1.71 + 0.00204i)6-s + 0.911i·7-s + (0.00358 + 0.999i)8-s − 1.92·9-s + (0.000533 + 0.447i)10-s − 0.301i·11-s + (0.00408 + 1.71i)12-s − 0.100·13-s + (0.911 − 0.00108i)14-s + 0.765i·15-s + (0.999 − 0.00477i)16-s − 1.46·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.00238 - 0.999i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.00238 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.359678 + 0.360538i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.359678 + 0.360538i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.00238 + 1.99i)T \) |
| 5 | \( 1 + 2.23T \) |
| 11 | \( 1 + 3.31iT \) |
good | 3 | \( 1 + 5.13iT - 9T^{2} \) |
| 7 | \( 1 - 6.37iT - 49T^{2} \) |
| 13 | \( 1 + 1.30T + 169T^{2} \) |
| 17 | \( 1 + 24.9T + 289T^{2} \) |
| 19 | \( 1 + 29.5iT - 361T^{2} \) |
| 23 | \( 1 + 4.05iT - 529T^{2} \) |
| 29 | \( 1 + 6.14T + 841T^{2} \) |
| 31 | \( 1 - 16.6iT - 961T^{2} \) |
| 37 | \( 1 + 11.3T + 1.36e3T^{2} \) |
| 41 | \( 1 + 46.1T + 1.68e3T^{2} \) |
| 43 | \( 1 + 51.0iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 74.9iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 52.6T + 2.80e3T^{2} \) |
| 59 | \( 1 + 11.6iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 62.5T + 3.72e3T^{2} \) |
| 67 | \( 1 - 49.7iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 132. iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 113.T + 5.32e3T^{2} \) |
| 79 | \( 1 + 144. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 67.6iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 155.T + 7.92e3T^{2} \) |
| 97 | \( 1 - 163.T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.61815384051976481170169391782, −10.83662427128112166005017928592, −9.007472313709219695901987548787, −8.581109872283463375857655090658, −7.34468208222787535723996621280, −6.23859186772818197063499473546, −4.86548648556205105436093575754, −2.94902107882452218126441279127, −1.95692677359588519435533378752, −0.27484814452698873027877878486,
3.70173936888732294773416110379, 4.29124969610334717819083466318, 5.30424949253546613414363734875, 6.66381905477249484998235442595, 7.917009508465619784516412199275, 8.860662321637006978316495303093, 9.873790091767117191972210169076, 10.46678357748583220625832211322, 11.58002733848919251756750290510, 13.04776186922666598459539412531