L(s) = 1 | + (−1.52 − 1.52i)3-s + (4.49 − 2.19i)5-s + (0.0256 − 0.0256i)7-s − 4.34i·9-s − 3.31·11-s + (1.36 + 1.36i)13-s + (−10.1 − 3.49i)15-s + (4.75 − 4.75i)17-s − 24.5i·19-s − 0.0783·21-s + (−14.4 − 14.4i)23-s + (15.3 − 19.7i)25-s + (−20.3 + 20.3i)27-s − 51.3i·29-s − 8.20·31-s + ⋯ |
L(s) = 1 | + (−0.508 − 0.508i)3-s + (0.898 − 0.439i)5-s + (0.00367 − 0.00367i)7-s − 0.483i·9-s − 0.301·11-s + (0.105 + 0.105i)13-s + (−0.679 − 0.233i)15-s + (0.279 − 0.279i)17-s − 1.29i·19-s − 0.00373·21-s + (−0.627 − 0.627i)23-s + (0.613 − 0.789i)25-s + (−0.753 + 0.753i)27-s − 1.76i·29-s − 0.264·31-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(−0.0983+0.995i)Λ(3−s)
Λ(s)=(=(220s/2ΓC(s+1)L(s)(−0.0983+0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
−0.0983+0.995i
|
Analytic conductor: |
5.99456 |
Root analytic conductor: |
2.44838 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(133,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :1), −0.0983+0.995i)
|
Particular Values
L(23) |
≈ |
0.907864−1.00197i |
L(21) |
≈ |
0.907864−1.00197i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−4.49+2.19i)T |
| 11 | 1+3.31T |
good | 3 | 1+(1.52+1.52i)T+9iT2 |
| 7 | 1+(−0.0256+0.0256i)T−49iT2 |
| 13 | 1+(−1.36−1.36i)T+169iT2 |
| 17 | 1+(−4.75+4.75i)T−289iT2 |
| 19 | 1+24.5iT−361T2 |
| 23 | 1+(14.4+14.4i)T+529iT2 |
| 29 | 1+51.3iT−841T2 |
| 31 | 1+8.20T+961T2 |
| 37 | 1+(0.158−0.158i)T−1.36e3iT2 |
| 41 | 1−32.4T+1.68e3T2 |
| 43 | 1+(−38.0−38.0i)T+1.84e3iT2 |
| 47 | 1+(32.5−32.5i)T−2.20e3iT2 |
| 53 | 1+(−57.7−57.7i)T+2.80e3iT2 |
| 59 | 1−2.32iT−3.48e3T2 |
| 61 | 1−34.8T+3.72e3T2 |
| 67 | 1+(29.3−29.3i)T−4.48e3iT2 |
| 71 | 1−65.3T+5.04e3T2 |
| 73 | 1+(29.3+29.3i)T+5.32e3iT2 |
| 79 | 1+50.5iT−6.24e3T2 |
| 83 | 1+(−72.6−72.6i)T+6.88e3iT2 |
| 89 | 1+30.3iT−7.92e3T2 |
| 97 | 1+(34.2−34.2i)T−9.40e3iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.91685270683465779001222471367, −10.93526355425301732399364033551, −9.748555472394354555200302024111, −9.013958846115846485426793405866, −7.68590943232058061648151946868, −6.45961205693873881823783514113, −5.75045294744345198633370488622, −4.45904295306416114250743502332, −2.50084754765512991761082270705, −0.812285033726378417554554389851,
1.94469228099144606545483090857, 3.63001622212411039576933039594, 5.23360077615689940995688962493, 5.85470060466772574468465048638, 7.18533298848092060924682240898, 8.399447383744524404558912467954, 9.737669495324787618614707479245, 10.37377392293097624841529610842, 11.08114696165531916234712100634, 12.28500413783974897185359889410