L(s) = 1 | + (1.36 + 1.36i)3-s + (4.24 + 2.64i)5-s + (4.16 − 4.16i)7-s − 5.29i·9-s + 3.31·11-s + (7.53 + 7.53i)13-s + (2.16 + 9.37i)15-s + (−10.2 + 10.2i)17-s + 6.46i·19-s + 11.3·21-s + (−0.810 − 0.810i)23-s + (10.9 + 22.4i)25-s + (19.4 − 19.4i)27-s − 2.81i·29-s + 13.1·31-s + ⋯ |
L(s) = 1 | + (0.453 + 0.453i)3-s + (0.848 + 0.529i)5-s + (0.594 − 0.594i)7-s − 0.588i·9-s + 0.301·11-s + (0.579 + 0.579i)13-s + (0.144 + 0.625i)15-s + (−0.605 + 0.605i)17-s + 0.340i·19-s + 0.539·21-s + (−0.0352 − 0.0352i)23-s + (0.439 + 0.898i)25-s + (0.720 − 0.720i)27-s − 0.0969i·29-s + 0.424·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.896 - 0.443i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.896 - 0.443i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.11360 + 0.493956i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.11360 + 0.493956i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-4.24 - 2.64i)T \) |
| 11 | \( 1 - 3.31T \) |
good | 3 | \( 1 + (-1.36 - 1.36i)T + 9iT^{2} \) |
| 7 | \( 1 + (-4.16 + 4.16i)T - 49iT^{2} \) |
| 13 | \( 1 + (-7.53 - 7.53i)T + 169iT^{2} \) |
| 17 | \( 1 + (10.2 - 10.2i)T - 289iT^{2} \) |
| 19 | \( 1 - 6.46iT - 361T^{2} \) |
| 23 | \( 1 + (0.810 + 0.810i)T + 529iT^{2} \) |
| 29 | \( 1 + 2.81iT - 841T^{2} \) |
| 31 | \( 1 - 13.1T + 961T^{2} \) |
| 37 | \( 1 + (-4.46 + 4.46i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + 71.2T + 1.68e3T^{2} \) |
| 43 | \( 1 + (17.9 + 17.9i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (-9.43 + 9.43i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (-1.65 - 1.65i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + 35.5iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 71.8T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-64.1 + 64.1i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 + 77.7T + 5.04e3T^{2} \) |
| 73 | \( 1 + (66.9 + 66.9i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + 42.5iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (58.8 + 58.8i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 - 111. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-52.0 + 52.0i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.03096713513333828552122373817, −10.96172295408158773506846073458, −10.18000420095989614889444589553, −9.246885380984771035009134053465, −8.362636117114452423973286268437, −6.92114774608541240208634202296, −6.07309038589560335904590209274, −4.49083520960824496796110861056, −3.38234638682046916073462839153, −1.69541760760645339835147635779,
1.52140200820051163532608095565, 2.70981712925565931253065485483, 4.72692274548705372309127150574, 5.66371584154087404615200265276, 6.93699809445567701137687126172, 8.285104464577923062972439351834, 8.779683725577935127124302569220, 9.950209789123311984620734654781, 11.06590080723307797294134684875, 12.08661754246806697987948425179