Properties

Label 2-220-5.3-c2-0-5
Degree 22
Conductor 220220
Sign 0.8960.443i0.896 - 0.443i
Analytic cond. 5.994565.99456
Root an. cond. 2.448382.44838
Motivic weight 22
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.36 + 1.36i)3-s + (4.24 + 2.64i)5-s + (4.16 − 4.16i)7-s − 5.29i·9-s + 3.31·11-s + (7.53 + 7.53i)13-s + (2.16 + 9.37i)15-s + (−10.2 + 10.2i)17-s + 6.46i·19-s + 11.3·21-s + (−0.810 − 0.810i)23-s + (10.9 + 22.4i)25-s + (19.4 − 19.4i)27-s − 2.81i·29-s + 13.1·31-s + ⋯
L(s)  = 1  + (0.453 + 0.453i)3-s + (0.848 + 0.529i)5-s + (0.594 − 0.594i)7-s − 0.588i·9-s + 0.301·11-s + (0.579 + 0.579i)13-s + (0.144 + 0.625i)15-s + (−0.605 + 0.605i)17-s + 0.340i·19-s + 0.539·21-s + (−0.0352 − 0.0352i)23-s + (0.439 + 0.898i)25-s + (0.720 − 0.720i)27-s − 0.0969i·29-s + 0.424·31-s + ⋯

Functional equation

Λ(s)=(220s/2ΓC(s)L(s)=((0.8960.443i)Λ(3s)\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.896 - 0.443i)\, \overline{\Lambda}(3-s) \end{aligned}
Λ(s)=(220s/2ΓC(s+1)L(s)=((0.8960.443i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.896 - 0.443i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 220220    =    225112^{2} \cdot 5 \cdot 11
Sign: 0.8960.443i0.896 - 0.443i
Analytic conductor: 5.994565.99456
Root analytic conductor: 2.448382.44838
Motivic weight: 22
Rational: no
Arithmetic: yes
Character: χ220(133,)\chi_{220} (133, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 220, ( :1), 0.8960.443i)(2,\ 220,\ (\ :1),\ 0.896 - 0.443i)

Particular Values

L(32)L(\frac{3}{2}) \approx 2.11360+0.493956i2.11360 + 0.493956i
L(12)L(\frac12) \approx 2.11360+0.493956i2.11360 + 0.493956i
L(2)L(2) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1+(4.242.64i)T 1 + (-4.24 - 2.64i)T
11 13.31T 1 - 3.31T
good3 1+(1.361.36i)T+9iT2 1 + (-1.36 - 1.36i)T + 9iT^{2}
7 1+(4.16+4.16i)T49iT2 1 + (-4.16 + 4.16i)T - 49iT^{2}
13 1+(7.537.53i)T+169iT2 1 + (-7.53 - 7.53i)T + 169iT^{2}
17 1+(10.210.2i)T289iT2 1 + (10.2 - 10.2i)T - 289iT^{2}
19 16.46iT361T2 1 - 6.46iT - 361T^{2}
23 1+(0.810+0.810i)T+529iT2 1 + (0.810 + 0.810i)T + 529iT^{2}
29 1+2.81iT841T2 1 + 2.81iT - 841T^{2}
31 113.1T+961T2 1 - 13.1T + 961T^{2}
37 1+(4.46+4.46i)T1.36e3iT2 1 + (-4.46 + 4.46i)T - 1.36e3iT^{2}
41 1+71.2T+1.68e3T2 1 + 71.2T + 1.68e3T^{2}
43 1+(17.9+17.9i)T+1.84e3iT2 1 + (17.9 + 17.9i)T + 1.84e3iT^{2}
47 1+(9.43+9.43i)T2.20e3iT2 1 + (-9.43 + 9.43i)T - 2.20e3iT^{2}
53 1+(1.651.65i)T+2.80e3iT2 1 + (-1.65 - 1.65i)T + 2.80e3iT^{2}
59 1+35.5iT3.48e3T2 1 + 35.5iT - 3.48e3T^{2}
61 1+71.8T+3.72e3T2 1 + 71.8T + 3.72e3T^{2}
67 1+(64.1+64.1i)T4.48e3iT2 1 + (-64.1 + 64.1i)T - 4.48e3iT^{2}
71 1+77.7T+5.04e3T2 1 + 77.7T + 5.04e3T^{2}
73 1+(66.9+66.9i)T+5.32e3iT2 1 + (66.9 + 66.9i)T + 5.32e3iT^{2}
79 1+42.5iT6.24e3T2 1 + 42.5iT - 6.24e3T^{2}
83 1+(58.8+58.8i)T+6.88e3iT2 1 + (58.8 + 58.8i)T + 6.88e3iT^{2}
89 1111.iT7.92e3T2 1 - 111. iT - 7.92e3T^{2}
97 1+(52.0+52.0i)T9.40e3iT2 1 + (-52.0 + 52.0i)T - 9.40e3iT^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.03096713513333828552122373817, −10.96172295408158773506846073458, −10.18000420095989614889444589553, −9.246885380984771035009134053465, −8.362636117114452423973286268437, −6.92114774608541240208634202296, −6.07309038589560335904590209274, −4.49083520960824496796110861056, −3.38234638682046916073462839153, −1.69541760760645339835147635779, 1.52140200820051163532608095565, 2.70981712925565931253065485483, 4.72692274548705372309127150574, 5.66371584154087404615200265276, 6.93699809445567701137687126172, 8.285104464577923062972439351834, 8.779683725577935127124302569220, 9.950209789123311984620734654781, 11.06590080723307797294134684875, 12.08661754246806697987948425179

Graph of the ZZ-function along the critical line