L(s) = 1 | + (−0.176 + 0.176i)3-s + (0.718 − 4.94i)5-s + (−8.33 − 8.33i)7-s + 8.93i·9-s − 3.31·11-s + (−17.8 + 17.8i)13-s + (0.746 + 0.999i)15-s + (−14.0 − 14.0i)17-s − 14.2i·19-s + 2.94·21-s + (17.1 − 17.1i)23-s + (−23.9 − 7.10i)25-s + (−3.16 − 3.16i)27-s − 9.52i·29-s + 17.4·31-s + ⋯ |
L(s) = 1 | + (−0.0588 + 0.0588i)3-s + (0.143 − 0.989i)5-s + (−1.19 − 1.19i)7-s + 0.993i·9-s − 0.301·11-s + (−1.37 + 1.37i)13-s + (0.0497 + 0.0666i)15-s + (−0.827 − 0.827i)17-s − 0.749i·19-s + 0.140·21-s + (0.745 − 0.745i)23-s + (−0.958 − 0.284i)25-s + (−0.117 − 0.117i)27-s − 0.328i·29-s + 0.561·31-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(−0.917+0.398i)Λ(3−s)
Λ(s)=(=(220s/2ΓC(s+1)L(s)(−0.917+0.398i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
−0.917+0.398i
|
Analytic conductor: |
5.99456 |
Root analytic conductor: |
2.44838 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(177,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :1), −0.917+0.398i)
|
Particular Values
L(23) |
≈ |
0.111721−0.538109i |
L(21) |
≈ |
0.111721−0.538109i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−0.718+4.94i)T |
| 11 | 1+3.31T |
good | 3 | 1+(0.176−0.176i)T−9iT2 |
| 7 | 1+(8.33+8.33i)T+49iT2 |
| 13 | 1+(17.8−17.8i)T−169iT2 |
| 17 | 1+(14.0+14.0i)T+289iT2 |
| 19 | 1+14.2iT−361T2 |
| 23 | 1+(−17.1+17.1i)T−529iT2 |
| 29 | 1+9.52iT−841T2 |
| 31 | 1−17.4T+961T2 |
| 37 | 1+(15.8+15.8i)T+1.36e3iT2 |
| 41 | 1+40.5T+1.68e3T2 |
| 43 | 1+(−26.3+26.3i)T−1.84e3iT2 |
| 47 | 1+(−19.5−19.5i)T+2.20e3iT2 |
| 53 | 1+(−25.7+25.7i)T−2.80e3iT2 |
| 59 | 1−24.2iT−3.48e3T2 |
| 61 | 1−77.6T+3.72e3T2 |
| 67 | 1+(68.1+68.1i)T+4.48e3iT2 |
| 71 | 1−28.0T+5.04e3T2 |
| 73 | 1+(1.22−1.22i)T−5.32e3iT2 |
| 79 | 1+127.iT−6.24e3T2 |
| 83 | 1+(64.3−64.3i)T−6.88e3iT2 |
| 89 | 1−125.iT−7.92e3T2 |
| 97 | 1+(25.6+25.6i)T+9.40e3iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.69549631069812987668484696235, −10.53343723587865378408380036985, −9.667978947830502891821468892125, −8.875909963959189587043908866140, −7.40822400235407898023688984915, −6.72496719678979424413414156595, −5.00052219434141497326264898737, −4.32181250873677052903059426616, −2.41352739182780778672229813905, −0.28106233884226743977471888162,
2.59077708475202347540553384202, 3.42420094505077448539743587870, 5.49555824800514863130660829985, 6.30722495969737343789055340827, 7.25902842967036021110491370762, 8.644025451142753630943138114588, 9.761207458260218949542535672457, 10.29438564479458356619804454834, 11.66493028900231651552554760636, 12.52574111516389284231544908018