L(s) = 1 | + (−0.176 + 0.176i)3-s + (0.718 − 4.94i)5-s + (−8.33 − 8.33i)7-s + 8.93i·9-s − 3.31·11-s + (−17.8 + 17.8i)13-s + (0.746 + 0.999i)15-s + (−14.0 − 14.0i)17-s − 14.2i·19-s + 2.94·21-s + (17.1 − 17.1i)23-s + (−23.9 − 7.10i)25-s + (−3.16 − 3.16i)27-s − 9.52i·29-s + 17.4·31-s + ⋯ |
L(s) = 1 | + (−0.0588 + 0.0588i)3-s + (0.143 − 0.989i)5-s + (−1.19 − 1.19i)7-s + 0.993i·9-s − 0.301·11-s + (−1.37 + 1.37i)13-s + (0.0497 + 0.0666i)15-s + (−0.827 − 0.827i)17-s − 0.749i·19-s + 0.140·21-s + (0.745 − 0.745i)23-s + (−0.958 − 0.284i)25-s + (−0.117 − 0.117i)27-s − 0.328i·29-s + 0.561·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.917 + 0.398i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.917 + 0.398i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.111721 - 0.538109i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.111721 - 0.538109i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.718 + 4.94i)T \) |
| 11 | \( 1 + 3.31T \) |
good | 3 | \( 1 + (0.176 - 0.176i)T - 9iT^{2} \) |
| 7 | \( 1 + (8.33 + 8.33i)T + 49iT^{2} \) |
| 13 | \( 1 + (17.8 - 17.8i)T - 169iT^{2} \) |
| 17 | \( 1 + (14.0 + 14.0i)T + 289iT^{2} \) |
| 19 | \( 1 + 14.2iT - 361T^{2} \) |
| 23 | \( 1 + (-17.1 + 17.1i)T - 529iT^{2} \) |
| 29 | \( 1 + 9.52iT - 841T^{2} \) |
| 31 | \( 1 - 17.4T + 961T^{2} \) |
| 37 | \( 1 + (15.8 + 15.8i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + 40.5T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-26.3 + 26.3i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (-19.5 - 19.5i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (-25.7 + 25.7i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 - 24.2iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 77.6T + 3.72e3T^{2} \) |
| 67 | \( 1 + (68.1 + 68.1i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 - 28.0T + 5.04e3T^{2} \) |
| 73 | \( 1 + (1.22 - 1.22i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 127. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (64.3 - 64.3i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 - 125. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (25.6 + 25.6i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.69549631069812987668484696235, −10.53343723587865378408380036985, −9.667978947830502891821468892125, −8.875909963959189587043908866140, −7.40822400235407898023688984915, −6.72496719678979424413414156595, −5.00052219434141497326264898737, −4.32181250873677052903059426616, −2.41352739182780778672229813905, −0.28106233884226743977471888162,
2.59077708475202347540553384202, 3.42420094505077448539743587870, 5.49555824800514863130660829985, 6.30722495969737343789055340827, 7.25902842967036021110491370762, 8.644025451142753630943138114588, 9.761207458260218949542535672457, 10.29438564479458356619804454834, 11.66493028900231651552554760636, 12.52574111516389284231544908018