L(s) = 1 | + (−3.86 + 2.80i)3-s + (−0.690 − 2.12i)5-s + (5.14 − 7.08i)7-s + (4.27 − 13.1i)9-s + (−4.15 + 10.1i)11-s + (−6.21 − 2.02i)13-s + (8.64 + 6.28i)15-s + (30.3 − 9.85i)17-s + (15.4 + 21.3i)19-s + 41.8i·21-s + 41.5·23-s + (−4.04 + 2.93i)25-s + (7.16 + 22.0i)27-s + (10.2 − 14.1i)29-s + (−4.59 + 14.1i)31-s + ⋯ |
L(s) = 1 | + (−1.28 + 0.936i)3-s + (−0.138 − 0.425i)5-s + (0.735 − 1.01i)7-s + (0.475 − 1.46i)9-s + (−0.377 + 0.926i)11-s + (−0.478 − 0.155i)13-s + (0.576 + 0.418i)15-s + (1.78 − 0.579i)17-s + (0.814 + 1.12i)19-s + 1.99i·21-s + 1.80·23-s + (−0.161 + 0.117i)25-s + (0.265 + 0.816i)27-s + (0.355 − 0.488i)29-s + (−0.148 + 0.456i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.976 - 0.217i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.976 - 0.217i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.04639 + 0.115174i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.04639 + 0.115174i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.690 + 2.12i)T \) |
| 11 | \( 1 + (4.15 - 10.1i)T \) |
good | 3 | \( 1 + (3.86 - 2.80i)T + (2.78 - 8.55i)T^{2} \) |
| 7 | \( 1 + (-5.14 + 7.08i)T + (-15.1 - 46.6i)T^{2} \) |
| 13 | \( 1 + (6.21 + 2.02i)T + (136. + 99.3i)T^{2} \) |
| 17 | \( 1 + (-30.3 + 9.85i)T + (233. - 169. i)T^{2} \) |
| 19 | \( 1 + (-15.4 - 21.3i)T + (-111. + 343. i)T^{2} \) |
| 23 | \( 1 - 41.5T + 529T^{2} \) |
| 29 | \( 1 + (-10.2 + 14.1i)T + (-259. - 799. i)T^{2} \) |
| 31 | \( 1 + (4.59 - 14.1i)T + (-777. - 564. i)T^{2} \) |
| 37 | \( 1 + (27.3 + 19.8i)T + (423. + 1.30e3i)T^{2} \) |
| 41 | \( 1 + (-2.22 - 3.05i)T + (-519. + 1.59e3i)T^{2} \) |
| 43 | \( 1 - 23.8iT - 1.84e3T^{2} \) |
| 47 | \( 1 + (-20.2 + 14.7i)T + (682. - 2.10e3i)T^{2} \) |
| 53 | \( 1 + (-32.5 + 100. i)T + (-2.27e3 - 1.65e3i)T^{2} \) |
| 59 | \( 1 + (49.2 + 35.8i)T + (1.07e3 + 3.31e3i)T^{2} \) |
| 61 | \( 1 + (-76.1 + 24.7i)T + (3.01e3 - 2.18e3i)T^{2} \) |
| 67 | \( 1 - 109.T + 4.48e3T^{2} \) |
| 71 | \( 1 + (10.4 + 32.2i)T + (-4.07e3 + 2.96e3i)T^{2} \) |
| 73 | \( 1 + (23.7 - 32.6i)T + (-1.64e3 - 5.06e3i)T^{2} \) |
| 79 | \( 1 + (-66.5 - 21.6i)T + (5.04e3 + 3.66e3i)T^{2} \) |
| 83 | \( 1 + (42.8 - 13.9i)T + (5.57e3 - 4.04e3i)T^{2} \) |
| 89 | \( 1 + 24.9T + 7.92e3T^{2} \) |
| 97 | \( 1 + (39.7 - 122. i)T + (-7.61e3 - 5.53e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.95366024008989124390342084257, −11.08249377593587570047963483225, −10.16016762046936389002123462122, −9.676689244531214083443559310672, −7.927389108728491040233635248346, −7.05163233109855889502658889863, −5.28583132092568521448431126958, −5.00313236478724114101438289257, −3.71597062003659372104514192025, −0.956457154888133134243995279363,
1.07605229318577362977115656604, 2.87116620930587495813513111281, 5.19336268760880421288537122566, 5.64209396336760779783072662277, 6.91041208190727031768849528814, 7.76184429581966907724568616035, 8.945833162779363040016513084027, 10.50568298852932370527583487736, 11.31059047589562566947225174744, 11.92546601200809301971757951529