L(s) = 1 | + (−3.86 + 2.80i)3-s + (−0.690 − 2.12i)5-s + (5.14 − 7.08i)7-s + (4.27 − 13.1i)9-s + (−4.15 + 10.1i)11-s + (−6.21 − 2.02i)13-s + (8.64 + 6.28i)15-s + (30.3 − 9.85i)17-s + (15.4 + 21.3i)19-s + 41.8i·21-s + 41.5·23-s + (−4.04 + 2.93i)25-s + (7.16 + 22.0i)27-s + (10.2 − 14.1i)29-s + (−4.59 + 14.1i)31-s + ⋯ |
L(s) = 1 | + (−1.28 + 0.936i)3-s + (−0.138 − 0.425i)5-s + (0.735 − 1.01i)7-s + (0.475 − 1.46i)9-s + (−0.377 + 0.926i)11-s + (−0.478 − 0.155i)13-s + (0.576 + 0.418i)15-s + (1.78 − 0.579i)17-s + (0.814 + 1.12i)19-s + 1.99i·21-s + 1.80·23-s + (−0.161 + 0.117i)25-s + (0.265 + 0.816i)27-s + (0.355 − 0.488i)29-s + (−0.148 + 0.456i)31-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(0.976−0.217i)Λ(3−s)
Λ(s)=(=(220s/2ΓC(s+1)L(s)(0.976−0.217i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
0.976−0.217i
|
Analytic conductor: |
5.99456 |
Root analytic conductor: |
2.44838 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :1), 0.976−0.217i)
|
Particular Values
L(23) |
≈ |
1.04639+0.115174i |
L(21) |
≈ |
1.04639+0.115174i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.690+2.12i)T |
| 11 | 1+(4.15−10.1i)T |
good | 3 | 1+(3.86−2.80i)T+(2.78−8.55i)T2 |
| 7 | 1+(−5.14+7.08i)T+(−15.1−46.6i)T2 |
| 13 | 1+(6.21+2.02i)T+(136.+99.3i)T2 |
| 17 | 1+(−30.3+9.85i)T+(233.−169.i)T2 |
| 19 | 1+(−15.4−21.3i)T+(−111.+343.i)T2 |
| 23 | 1−41.5T+529T2 |
| 29 | 1+(−10.2+14.1i)T+(−259.−799.i)T2 |
| 31 | 1+(4.59−14.1i)T+(−777.−564.i)T2 |
| 37 | 1+(27.3+19.8i)T+(423.+1.30e3i)T2 |
| 41 | 1+(−2.22−3.05i)T+(−519.+1.59e3i)T2 |
| 43 | 1−23.8iT−1.84e3T2 |
| 47 | 1+(−20.2+14.7i)T+(682.−2.10e3i)T2 |
| 53 | 1+(−32.5+100.i)T+(−2.27e3−1.65e3i)T2 |
| 59 | 1+(49.2+35.8i)T+(1.07e3+3.31e3i)T2 |
| 61 | 1+(−76.1+24.7i)T+(3.01e3−2.18e3i)T2 |
| 67 | 1−109.T+4.48e3T2 |
| 71 | 1+(10.4+32.2i)T+(−4.07e3+2.96e3i)T2 |
| 73 | 1+(23.7−32.6i)T+(−1.64e3−5.06e3i)T2 |
| 79 | 1+(−66.5−21.6i)T+(5.04e3+3.66e3i)T2 |
| 83 | 1+(42.8−13.9i)T+(5.57e3−4.04e3i)T2 |
| 89 | 1+24.9T+7.92e3T2 |
| 97 | 1+(39.7−122.i)T+(−7.61e3−5.53e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.95366024008989124390342084257, −11.08249377593587570047963483225, −10.16016762046936389002123462122, −9.676689244531214083443559310672, −7.927389108728491040233635248346, −7.05163233109855889502658889863, −5.28583132092568521448431126958, −5.00313236478724114101438289257, −3.71597062003659372104514192025, −0.956457154888133134243995279363,
1.07605229318577362977115656604, 2.87116620930587495813513111281, 5.19336268760880421288537122566, 5.64209396336760779783072662277, 6.91041208190727031768849528814, 7.76184429581966907724568616035, 8.945833162779363040016513084027, 10.50568298852932370527583487736, 11.31059047589562566947225174744, 11.92546601200809301971757951529