L(s) = 1 | + (−2.63 + 3.62i)3-s + (−3.75 + 3.29i)5-s + (−5.27 + 3.83i)7-s + (−3.42 − 10.5i)9-s + (8.17 − 7.36i)11-s + (−1.48 − 4.55i)13-s + (−2.04 − 22.3i)15-s + (2.76 − 8.50i)17-s + (−2.05 + 2.83i)19-s − 29.2i·21-s + 29.8i·23-s + (3.27 − 24.7i)25-s + (8.89 + 2.89i)27-s + (−30.7 − 42.3i)29-s + (2.88 + 8.88i)31-s + ⋯ |
L(s) = 1 | + (−0.878 + 1.20i)3-s + (−0.751 + 0.659i)5-s + (−0.754 + 0.548i)7-s + (−0.380 − 1.17i)9-s + (0.742 − 0.669i)11-s + (−0.113 − 0.350i)13-s + (−0.136 − 1.48i)15-s + (0.162 − 0.500i)17-s + (−0.108 + 0.149i)19-s − 1.39i·21-s + 1.29i·23-s + (0.130 − 0.991i)25-s + (0.329 + 0.107i)27-s + (−1.06 − 1.46i)29-s + (0.0931 + 0.286i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.398 + 0.917i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.398 + 0.917i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0651339 - 0.0993079i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0651339 - 0.0993079i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (3.75 - 3.29i)T \) |
| 11 | \( 1 + (-8.17 + 7.36i)T \) |
good | 3 | \( 1 + (2.63 - 3.62i)T + (-2.78 - 8.55i)T^{2} \) |
| 7 | \( 1 + (5.27 - 3.83i)T + (15.1 - 46.6i)T^{2} \) |
| 13 | \( 1 + (1.48 + 4.55i)T + (-136. + 99.3i)T^{2} \) |
| 17 | \( 1 + (-2.76 + 8.50i)T + (-233. - 169. i)T^{2} \) |
| 19 | \( 1 + (2.05 - 2.83i)T + (-111. - 343. i)T^{2} \) |
| 23 | \( 1 - 29.8iT - 529T^{2} \) |
| 29 | \( 1 + (30.7 + 42.3i)T + (-259. + 799. i)T^{2} \) |
| 31 | \( 1 + (-2.88 - 8.88i)T + (-777. + 564. i)T^{2} \) |
| 37 | \( 1 + (34.2 + 47.0i)T + (-423. + 1.30e3i)T^{2} \) |
| 41 | \( 1 + (33.0 - 45.5i)T + (-519. - 1.59e3i)T^{2} \) |
| 43 | \( 1 - 26.6T + 1.84e3T^{2} \) |
| 47 | \( 1 + (0.426 - 0.586i)T + (-682. - 2.10e3i)T^{2} \) |
| 53 | \( 1 + (67.9 - 22.0i)T + (2.27e3 - 1.65e3i)T^{2} \) |
| 59 | \( 1 + (81.8 - 59.4i)T + (1.07e3 - 3.31e3i)T^{2} \) |
| 61 | \( 1 + (-68.3 - 22.2i)T + (3.01e3 + 2.18e3i)T^{2} \) |
| 67 | \( 1 + 7.36iT - 4.48e3T^{2} \) |
| 71 | \( 1 + (4.14 - 12.7i)T + (-4.07e3 - 2.96e3i)T^{2} \) |
| 73 | \( 1 + (-76.1 + 55.3i)T + (1.64e3 - 5.06e3i)T^{2} \) |
| 79 | \( 1 + (48.3 - 15.7i)T + (5.04e3 - 3.66e3i)T^{2} \) |
| 83 | \( 1 + (-27.8 + 85.8i)T + (-5.57e3 - 4.04e3i)T^{2} \) |
| 89 | \( 1 - 12.2T + 7.92e3T^{2} \) |
| 97 | \( 1 + (67.3 - 21.8i)T + (7.61e3 - 5.53e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.30454677205199348173474277327, −11.52947779199769154346570479117, −10.93374360860276050700367401253, −9.866582678015638531042711954637, −9.156457909319688093676591824782, −7.67586617841312076867140183550, −6.33279445143760221735441927246, −5.51096984036792827752105881437, −4.08388716531155750342110666135, −3.19447034995246379949126560168,
0.07494314699948993333617218527, 1.51871619462684986599901752832, 3.79566039590959682416501385374, 5.10783148960583270343205028501, 6.59465843439558850586739512136, 7.01126396957020550283804735214, 8.188679204299592400817528548468, 9.374469114325219599960009212437, 10.69641889747348596044698454397, 11.67372803736072838016760660951