L(s) = 1 | + (−2.63 + 3.62i)3-s + (−3.75 + 3.29i)5-s + (−5.27 + 3.83i)7-s + (−3.42 − 10.5i)9-s + (8.17 − 7.36i)11-s + (−1.48 − 4.55i)13-s + (−2.04 − 22.3i)15-s + (2.76 − 8.50i)17-s + (−2.05 + 2.83i)19-s − 29.2i·21-s + 29.8i·23-s + (3.27 − 24.7i)25-s + (8.89 + 2.89i)27-s + (−30.7 − 42.3i)29-s + (2.88 + 8.88i)31-s + ⋯ |
L(s) = 1 | + (−0.878 + 1.20i)3-s + (−0.751 + 0.659i)5-s + (−0.754 + 0.548i)7-s + (−0.380 − 1.17i)9-s + (0.742 − 0.669i)11-s + (−0.113 − 0.350i)13-s + (−0.136 − 1.48i)15-s + (0.162 − 0.500i)17-s + (−0.108 + 0.149i)19-s − 1.39i·21-s + 1.29i·23-s + (0.130 − 0.991i)25-s + (0.329 + 0.107i)27-s + (−1.06 − 1.46i)29-s + (0.0931 + 0.286i)31-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(−0.398+0.917i)Λ(3−s)
Λ(s)=(=(220s/2ΓC(s+1)L(s)(−0.398+0.917i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
−0.398+0.917i
|
Analytic conductor: |
5.99456 |
Root analytic conductor: |
2.44838 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(149,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :1), −0.398+0.917i)
|
Particular Values
L(23) |
≈ |
0.0651339−0.0993079i |
L(21) |
≈ |
0.0651339−0.0993079i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(3.75−3.29i)T |
| 11 | 1+(−8.17+7.36i)T |
good | 3 | 1+(2.63−3.62i)T+(−2.78−8.55i)T2 |
| 7 | 1+(5.27−3.83i)T+(15.1−46.6i)T2 |
| 13 | 1+(1.48+4.55i)T+(−136.+99.3i)T2 |
| 17 | 1+(−2.76+8.50i)T+(−233.−169.i)T2 |
| 19 | 1+(2.05−2.83i)T+(−111.−343.i)T2 |
| 23 | 1−29.8iT−529T2 |
| 29 | 1+(30.7+42.3i)T+(−259.+799.i)T2 |
| 31 | 1+(−2.88−8.88i)T+(−777.+564.i)T2 |
| 37 | 1+(34.2+47.0i)T+(−423.+1.30e3i)T2 |
| 41 | 1+(33.0−45.5i)T+(−519.−1.59e3i)T2 |
| 43 | 1−26.6T+1.84e3T2 |
| 47 | 1+(0.426−0.586i)T+(−682.−2.10e3i)T2 |
| 53 | 1+(67.9−22.0i)T+(2.27e3−1.65e3i)T2 |
| 59 | 1+(81.8−59.4i)T+(1.07e3−3.31e3i)T2 |
| 61 | 1+(−68.3−22.2i)T+(3.01e3+2.18e3i)T2 |
| 67 | 1+7.36iT−4.48e3T2 |
| 71 | 1+(4.14−12.7i)T+(−4.07e3−2.96e3i)T2 |
| 73 | 1+(−76.1+55.3i)T+(1.64e3−5.06e3i)T2 |
| 79 | 1+(48.3−15.7i)T+(5.04e3−3.66e3i)T2 |
| 83 | 1+(−27.8+85.8i)T+(−5.57e3−4.04e3i)T2 |
| 89 | 1−12.2T+7.92e3T2 |
| 97 | 1+(67.3−21.8i)T+(7.61e3−5.53e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.30454677205199348173474277327, −11.52947779199769154346570479117, −10.93374360860276050700367401253, −9.866582678015638531042711954637, −9.156457909319688093676591824782, −7.67586617841312076867140183550, −6.33279445143760221735441927246, −5.51096984036792827752105881437, −4.08388716531155750342110666135, −3.19447034995246379949126560168,
0.07494314699948993333617218527, 1.51871619462684986599901752832, 3.79566039590959682416501385374, 5.10783148960583270343205028501, 6.59465843439558850586739512136, 7.01126396957020550283804735214, 8.188679204299592400817528548468, 9.374469114325219599960009212437, 10.69641889747348596044698454397, 11.67372803736072838016760660951