L(s) = 1 | + (−0.309 − 0.951i)2-s + (0.5 + 0.363i)3-s + (−0.809 + 0.587i)4-s + (0.190 − 0.587i)6-s + (0.809 + 0.587i)8-s + (−0.190 − 0.587i)9-s + (−0.809 − 0.587i)11-s − 0.618·12-s + (0.309 − 0.951i)16-s + (0.5 − 1.53i)17-s + (−0.5 + 0.363i)18-s + (1.30 + 0.951i)19-s + (−0.309 + 0.951i)22-s + (0.190 + 0.587i)24-s + (0.309 − 0.951i)27-s + ⋯ |
L(s) = 1 | + (−0.309 − 0.951i)2-s + (0.5 + 0.363i)3-s + (−0.809 + 0.587i)4-s + (0.190 − 0.587i)6-s + (0.809 + 0.587i)8-s + (−0.190 − 0.587i)9-s + (−0.809 − 0.587i)11-s − 0.618·12-s + (0.309 − 0.951i)16-s + (0.5 − 1.53i)17-s + (−0.5 + 0.363i)18-s + (1.30 + 0.951i)19-s + (−0.309 + 0.951i)22-s + (0.190 + 0.587i)24-s + (0.309 − 0.951i)27-s + ⋯ |
Λ(s)=(=(2200s/2ΓC(s)L(s)(−0.0457+0.998i)Λ(1−s)
Λ(s)=(=(2200s/2ΓC(s)L(s)(−0.0457+0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
2200
= 23⋅52⋅11
|
Sign: |
−0.0457+0.998i
|
Analytic conductor: |
1.09794 |
Root analytic conductor: |
1.04782 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2200(2051,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2200, ( :0), −0.0457+0.998i)
|
Particular Values
L(21) |
≈ |
1.021246536 |
L(21) |
≈ |
1.021246536 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.309+0.951i)T |
| 5 | 1 |
| 11 | 1+(0.809+0.587i)T |
good | 3 | 1+(−0.5−0.363i)T+(0.309+0.951i)T2 |
| 7 | 1+(−0.309+0.951i)T2 |
| 13 | 1+(0.809−0.587i)T2 |
| 17 | 1+(−0.5+1.53i)T+(−0.809−0.587i)T2 |
| 19 | 1+(−1.30−0.951i)T+(0.309+0.951i)T2 |
| 23 | 1−T2 |
| 29 | 1+(−0.309+0.951i)T2 |
| 31 | 1+(0.809−0.587i)T2 |
| 37 | 1+(−0.309+0.951i)T2 |
| 41 | 1+(0.5+0.363i)T+(0.309+0.951i)T2 |
| 43 | 1+0.618T+T2 |
| 47 | 1+(−0.309−0.951i)T2 |
| 53 | 1+(0.809−0.587i)T2 |
| 59 | 1+(−1.30+0.951i)T+(0.309−0.951i)T2 |
| 61 | 1+(0.809+0.587i)T2 |
| 67 | 1−1.61T+T2 |
| 71 | 1+(0.809+0.587i)T2 |
| 73 | 1+(−0.5+0.363i)T+(0.309−0.951i)T2 |
| 79 | 1+(0.809−0.587i)T2 |
| 83 | 1+(0.190−0.587i)T+(−0.809−0.587i)T2 |
| 89 | 1−0.618T+T2 |
| 97 | 1+(0.190+0.587i)T+(−0.809+0.587i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.247650372337260065120472888611, −8.399367784788583336861022788743, −7.85658230835371947491012282230, −6.93600964844870759520643863493, −5.54759667591958564634008288264, −4.99173590485576578852466093235, −3.68030398588449833708107847547, −3.25244401850014880466607744765, −2.35828107882529096467711899096, −0.822531400857455061362497654972,
1.42380497132462276101063569383, 2.62145598071620995688868743109, 3.82510869626105543069558411739, 4.98593204750475581071293051266, 5.45094109738482224200887376974, 6.50144902097619749598806099721, 7.33019955386800141383572182915, 7.85782329058285093430648930201, 8.428896677191885020698216158774, 9.217282875419131376557873854181