L(s) = 1 | + (−0.309 − 0.951i)2-s + (0.5 + 0.363i)3-s + (−0.809 + 0.587i)4-s + (0.190 − 0.587i)6-s + (0.809 + 0.587i)8-s + (−0.190 − 0.587i)9-s + (−0.809 − 0.587i)11-s − 0.618·12-s + (0.309 − 0.951i)16-s + (0.5 − 1.53i)17-s + (−0.5 + 0.363i)18-s + (1.30 + 0.951i)19-s + (−0.309 + 0.951i)22-s + (0.190 + 0.587i)24-s + (0.309 − 0.951i)27-s + ⋯ |
L(s) = 1 | + (−0.309 − 0.951i)2-s + (0.5 + 0.363i)3-s + (−0.809 + 0.587i)4-s + (0.190 − 0.587i)6-s + (0.809 + 0.587i)8-s + (−0.190 − 0.587i)9-s + (−0.809 − 0.587i)11-s − 0.618·12-s + (0.309 − 0.951i)16-s + (0.5 − 1.53i)17-s + (−0.5 + 0.363i)18-s + (1.30 + 0.951i)19-s + (−0.309 + 0.951i)22-s + (0.190 + 0.587i)24-s + (0.309 − 0.951i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0457 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0457 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.021246536\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.021246536\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.309 + 0.951i)T \) |
| 5 | \( 1 \) |
| 11 | \( 1 + (0.809 + 0.587i)T \) |
good | 3 | \( 1 + (-0.5 - 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 7 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 13 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 17 | \( 1 + (-0.5 + 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (-1.30 - 0.951i)T + (0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 41 | \( 1 + (0.5 + 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 + 0.618T + T^{2} \) |
| 47 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 59 | \( 1 + (-1.30 + 0.951i)T + (0.309 - 0.951i)T^{2} \) |
| 61 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 - 1.61T + T^{2} \) |
| 71 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 73 | \( 1 + (-0.5 + 0.363i)T + (0.309 - 0.951i)T^{2} \) |
| 79 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 83 | \( 1 + (0.190 - 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 89 | \( 1 - 0.618T + T^{2} \) |
| 97 | \( 1 + (0.190 + 0.587i)T + (-0.809 + 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.247650372337260065120472888611, −8.399367784788583336861022788743, −7.85658230835371947491012282230, −6.93600964844870759520643863493, −5.54759667591958564634008288264, −4.99173590485576578852466093235, −3.68030398588449833708107847547, −3.25244401850014880466607744765, −2.35828107882529096467711899096, −0.822531400857455061362497654972,
1.42380497132462276101063569383, 2.62145598071620995688868743109, 3.82510869626105543069558411739, 4.98593204750475581071293051266, 5.45094109738482224200887376974, 6.50144902097619749598806099721, 7.33019955386800141383572182915, 7.85782329058285093430648930201, 8.428896677191885020698216158774, 9.217282875419131376557873854181