L(s) = 1 | + 6·2-s + 13·4-s + 10·5-s − 12·8-s + 60·10-s − 28·11-s + 36·13-s − 147·16-s − 76·17-s − 160·19-s + 130·20-s − 168·22-s + 22·23-s + 75·25-s + 216·26-s + 250·29-s + 132·31-s − 366·32-s − 456·34-s − 416·37-s − 960·38-s − 120·40-s − 106·41-s − 666·43-s − 364·44-s + 132·46-s − 196·47-s + ⋯ |
L(s) = 1 | + 2.12·2-s + 13/8·4-s + 0.894·5-s − 0.530·8-s + 1.89·10-s − 0.767·11-s + 0.768·13-s − 2.29·16-s − 1.08·17-s − 1.93·19-s + 1.45·20-s − 1.62·22-s + 0.199·23-s + 3/5·25-s + 1.62·26-s + 1.60·29-s + 0.764·31-s − 2.02·32-s − 2.30·34-s − 1.84·37-s − 4.09·38-s − 0.474·40-s − 0.403·41-s − 2.36·43-s − 1.24·44-s + 0.423·46-s − 0.608·47-s + ⋯ |
Λ(s)=(=(4862025s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(4862025s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
4862025
= 34⋅52⋅74
|
Sign: |
1
|
Analytic conductor: |
16925.8 |
Root analytic conductor: |
11.4061 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 4862025, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C1 | (1−pT)2 |
| 7 | | 1 |
good | 2 | D4 | 1−3pT+23T2−3p4T3+p6T4 |
| 11 | D4 | 1+28T+2658T2+28p3T3+p6T4 |
| 13 | D4 | 1−36T+4518T2−36p3T3+p6T4 |
| 17 | D4 | 1+76T+5438T2+76p3T3+p6T4 |
| 19 | D4 | 1+160T+18766T2+160p3T3+p6T4 |
| 23 | D4 | 1−22T−2923T2−22p3T3+p6T4 |
| 29 | D4 | 1−250T+57203T2−250p3T3+p6T4 |
| 31 | D4 | 1−132T+43938T2−132p3T3+p6T4 |
| 37 | D4 | 1+416T+107578T2+416p3T3+p6T4 |
| 41 | D4 | 1+106T+138851T2+106p3T3+p6T4 |
| 43 | D4 | 1+666T+269853T2+666p3T3+p6T4 |
| 47 | D4 | 1+196T+209058T2+196p3T3+p6T4 |
| 53 | D4 | 1−952T+484002T2−952p3T3+p6T4 |
| 59 | D4 | 1−840T+445646T2−840p3T3+p6T4 |
| 61 | D4 | 1+98T−193437T2+98p3T3+p6T4 |
| 67 | D4 | 1+1286T+1005453T2+1286p3T3+p6T4 |
| 71 | D4 | 1+1064T+753846T2+1064p3T3+p6T4 |
| 73 | D4 | 1−172T+757582T2−172p3T3+p6T4 |
| 79 | D4 | 1+1240T+1278886T2+1240p3T3+p6T4 |
| 83 | D4 | 1+1906T+2051733T2+1906p3T3+p6T4 |
| 89 | D4 | 1−650T+1305611T2−650p3T3+p6T4 |
| 97 | D4 | 1−628T+1423942T2−628p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.636507046398640773636141976387, −8.453565340003411716840278633476, −7.54886544649725310425440671097, −7.02359095070133088163426710018, −6.57393217042474465696054973490, −6.49268043773588287301138132624, −5.89444212664407642106808594454, −5.79163956650594377421196551775, −5.11673505555507812672986026592, −4.88877306990796603936891745585, −4.56161651225160412598496109888, −4.18632835847452375611412491895, −3.64759922069914234253102412208, −3.27974395025858111346575102147, −2.63423560755013275398142139247, −2.46860401114981664092656161682, −1.79423959066463284730612155503, −1.20295674488558415113867060658, 0, 0,
1.20295674488558415113867060658, 1.79423959066463284730612155503, 2.46860401114981664092656161682, 2.63423560755013275398142139247, 3.27974395025858111346575102147, 3.64759922069914234253102412208, 4.18632835847452375611412491895, 4.56161651225160412598496109888, 4.88877306990796603936891745585, 5.11673505555507812672986026592, 5.79163956650594377421196551775, 5.89444212664407642106808594454, 6.49268043773588287301138132624, 6.57393217042474465696054973490, 7.02359095070133088163426710018, 7.54886544649725310425440671097, 8.453565340003411716840278633476, 8.636507046398640773636141976387