L(s) = 1 | + (−0.936 − 1.05i)2-s + (0.164 + 0.0216i)3-s + (−0.246 + 1.98i)4-s + (−0.755 + 0.0994i)5-s + (−0.130 − 0.194i)6-s + (−0.876 − 2.49i)7-s + (2.33 − 1.59i)8-s + (−2.87 − 0.769i)9-s + (0.812 + 0.707i)10-s + (2.95 − 2.26i)11-s + (−0.0835 + 0.320i)12-s + (−1.74 − 4.22i)13-s + (−1.82 + 3.26i)14-s − 0.126·15-s + (−3.87 − 0.980i)16-s + (3.44 − 5.96i)17-s + ⋯ |
L(s) = 1 | + (−0.662 − 0.749i)2-s + (0.0949 + 0.0124i)3-s + (−0.123 + 0.992i)4-s + (−0.337 + 0.0444i)5-s + (−0.0534 − 0.0793i)6-s + (−0.331 − 0.943i)7-s + (0.825 − 0.564i)8-s + (−0.957 − 0.256i)9-s + (0.257 + 0.223i)10-s + (0.890 − 0.683i)11-s + (−0.0241 + 0.0926i)12-s + (−0.485 − 1.17i)13-s + (−0.487 + 0.872i)14-s − 0.0326·15-s + (−0.969 − 0.245i)16-s + (0.835 − 1.44i)17-s + ⋯ |
Λ(s)=(=(224s/2ΓC(s)L(s)(−0.641+0.767i)Λ(2−s)
Λ(s)=(=(224s/2ΓC(s+1/2)L(s)(−0.641+0.767i)Λ(1−s)
Degree: |
2 |
Conductor: |
224
= 25⋅7
|
Sign: |
−0.641+0.767i
|
Analytic conductor: |
1.78864 |
Root analytic conductor: |
1.33740 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ224(59,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 224, ( :1/2), −0.641+0.767i)
|
Particular Values
L(1) |
≈ |
0.283004−0.605110i |
L(21) |
≈ |
0.283004−0.605110i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.936+1.05i)T |
| 7 | 1+(0.876+2.49i)T |
good | 3 | 1+(−0.164−0.0216i)T+(2.89+0.776i)T2 |
| 5 | 1+(0.755−0.0994i)T+(4.82−1.29i)T2 |
| 11 | 1+(−2.95+2.26i)T+(2.84−10.6i)T2 |
| 13 | 1+(1.74+4.22i)T+(−9.19+9.19i)T2 |
| 17 | 1+(−3.44+5.96i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−1.01−0.781i)T+(4.91+18.3i)T2 |
| 23 | 1+(1.63−6.09i)T+(−19.9−11.5i)T2 |
| 29 | 1+(0.478+1.15i)T+(−20.5+20.5i)T2 |
| 31 | 1+(1.64−2.84i)T+(−15.5−26.8i)T2 |
| 37 | 1+(1.24+9.42i)T+(−35.7+9.57i)T2 |
| 41 | 1+(−7.52−7.52i)T+41iT2 |
| 43 | 1+(−5.35−2.21i)T+(30.4+30.4i)T2 |
| 47 | 1+(−4.87+2.81i)T+(23.5−40.7i)T2 |
| 53 | 1+(−1.62−2.11i)T+(−13.7+51.1i)T2 |
| 59 | 1+(−10.5+8.10i)T+(15.2−56.9i)T2 |
| 61 | 1+(8.78+6.73i)T+(15.7+58.9i)T2 |
| 67 | 1+(1.21−9.22i)T+(−64.7−17.3i)T2 |
| 71 | 1+(5.31−5.31i)T−71iT2 |
| 73 | 1+(−4.98+1.33i)T+(63.2−36.5i)T2 |
| 79 | 1+(−3.13−5.43i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−6.31+2.61i)T+(58.6−58.6i)T2 |
| 89 | 1+(11.2+3.01i)T+(77.0+44.5i)T2 |
| 97 | 1+0.918iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.64874796058923750633432179035, −11.07924182042074022973455951962, −9.863288845464347998506242906744, −9.229306665359626266595840533170, −7.917818436166543243989223412943, −7.30846656359993303102810771828, −5.64794847746080762012968221897, −3.81685445874597456673437774469, −3.02749175176592373859627121654, −0.68788916700983352719206661571,
2.13080289339566821547461511022, 4.24327139375381362257674837525, 5.69627135015551798658925189041, 6.50653695014370182747641951577, 7.73936164704045488116909219329, 8.723818971041789068270487004215, 9.351749412971755442986091541334, 10.44699213700450941630926751094, 11.71609686570200275407748577435, 12.33724059682055262451188810004