L(s) = 1 | + (−1.20 + 2.09i)3-s + (−1.91 − 3.31i)5-s + (−1 − 2.44i)7-s + (−1.41 − 2.44i)9-s + (−0.207 + 0.358i)11-s − 2.82·13-s + 9.24·15-s + (2.91 − 5.04i)17-s + (−1.79 − 3.10i)19-s + (6.32 + 0.866i)21-s + (−1.62 − 2.80i)23-s + (−4.82 + 8.36i)25-s − 0.414·27-s + 2.82·29-s + (−4.20 + 7.28i)31-s + ⋯ |
L(s) = 1 | + (−0.696 + 1.20i)3-s + (−0.856 − 1.48i)5-s + (−0.377 − 0.925i)7-s + (−0.471 − 0.816i)9-s + (−0.0624 + 0.108i)11-s − 0.784·13-s + 2.38·15-s + (0.706 − 1.22i)17-s + (−0.411 − 0.712i)19-s + (1.38 + 0.188i)21-s + (−0.338 − 0.585i)23-s + (−0.965 + 1.67i)25-s − 0.0797·27-s + 0.525·29-s + (−0.755 + 1.30i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.198 + 0.980i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.198 + 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.298990 - 0.365447i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.298990 - 0.365447i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (1 + 2.44i)T \) |
good | 3 | \( 1 + (1.20 - 2.09i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (1.91 + 3.31i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (0.207 - 0.358i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 2.82T + 13T^{2} \) |
| 17 | \( 1 + (-2.91 + 5.04i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.79 + 3.10i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.62 + 2.80i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 2.82T + 29T^{2} \) |
| 31 | \( 1 + (4.20 - 7.28i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.32 - 2.30i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 1.17T + 41T^{2} \) |
| 43 | \( 1 + 1.65T + 43T^{2} \) |
| 47 | \( 1 + (3.79 + 6.56i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.5 + 0.866i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.44 + 7.70i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.32 - 2.30i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.62 + 9.73i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 2.34T + 71T^{2} \) |
| 73 | \( 1 + (-1.67 + 2.89i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.03 - 6.98i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 15.3T + 83T^{2} \) |
| 89 | \( 1 + (-4.5 - 7.79i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 6.82T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.95447090380714967130093443241, −11.00470647595595192609309142053, −9.998302211544781354820083614034, −9.294811313398675576747381963330, −8.115216830677667084266445815261, −6.94125238705006727806446586258, −5.08899489121680019822125765024, −4.74970796429945316308409696946, −3.63476503124581709168269301517, −0.41493240246859933979110567976,
2.25281250701362989151535054890, 3.65352756788188829622888871893, 5.76986169724734378208272622338, 6.42665345028336530833284235642, 7.43686613639004446020035357095, 8.110494502140131984945290582221, 9.831682518992228136269149994960, 10.87432782568891830810023882521, 11.78212290915825815982425658793, 12.28018101645004293635632017827