L(s) = 1 | + (0.207 + 0.358i)3-s + (0.914 − 1.58i)5-s + (−1 − 2.44i)7-s + (1.41 − 2.44i)9-s + (1.20 + 2.09i)11-s + 2.82·13-s + 0.757·15-s + (0.0857 + 0.148i)17-s + (−3.20 + 5.55i)19-s + (0.671 − 0.866i)21-s + (2.62 − 4.54i)23-s + (0.828 + 1.43i)25-s + 2.41·27-s − 2.82·29-s + (−2.79 − 4.83i)31-s + ⋯ |
L(s) = 1 | + (0.119 + 0.207i)3-s + (0.408 − 0.708i)5-s + (−0.377 − 0.925i)7-s + (0.471 − 0.816i)9-s + (0.363 + 0.630i)11-s + 0.784·13-s + 0.195·15-s + (0.0208 + 0.0360i)17-s + (−0.735 + 1.27i)19-s + (0.146 − 0.188i)21-s + (0.546 − 0.946i)23-s + (0.165 + 0.286i)25-s + 0.464·27-s − 0.525·29-s + (−0.501 − 0.868i)31-s + ⋯ |
Λ(s)=(=(224s/2ΓC(s)L(s)(0.827+0.561i)Λ(2−s)
Λ(s)=(=(224s/2ΓC(s+1/2)L(s)(0.827+0.561i)Λ(1−s)
Degree: |
2 |
Conductor: |
224
= 25⋅7
|
Sign: |
0.827+0.561i
|
Analytic conductor: |
1.78864 |
Root analytic conductor: |
1.33740 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ224(65,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 224, ( :1/2), 0.827+0.561i)
|
Particular Values
L(1) |
≈ |
1.28976−0.396304i |
L(21) |
≈ |
1.28976−0.396304i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(1+2.44i)T |
good | 3 | 1+(−0.207−0.358i)T+(−1.5+2.59i)T2 |
| 5 | 1+(−0.914+1.58i)T+(−2.5−4.33i)T2 |
| 11 | 1+(−1.20−2.09i)T+(−5.5+9.52i)T2 |
| 13 | 1−2.82T+13T2 |
| 17 | 1+(−0.0857−0.148i)T+(−8.5+14.7i)T2 |
| 19 | 1+(3.20−5.55i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−2.62+4.54i)T+(−11.5−19.9i)T2 |
| 29 | 1+2.82T+29T2 |
| 31 | 1+(2.79+4.83i)T+(−15.5+26.8i)T2 |
| 37 | 1+(4.32−7.49i)T+(−18.5−32.0i)T2 |
| 41 | 1+6.82T+41T2 |
| 43 | 1−9.65T+43T2 |
| 47 | 1+(5.20−9.01i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−0.5−0.866i)T+(−26.5+45.8i)T2 |
| 59 | 1+(5.44+9.43i)T+(−29.5+51.0i)T2 |
| 61 | 1+(4.32−7.49i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−1.37−2.38i)T+(−33.5+58.0i)T2 |
| 71 | 1−13.6T+71T2 |
| 73 | 1+(−7.32−12.6i)T+(−36.5+63.2i)T2 |
| 79 | 1+(3.03−5.25i)T+(−39.5−68.4i)T2 |
| 83 | 1+7.31T+83T2 |
| 89 | 1+(−4.5+7.79i)T+(−44.5−77.0i)T2 |
| 97 | 1+1.17T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.53597386128235055752458637300, −11.07843385034119615610633324111, −10.05561745447979236665110637190, −9.377272580032704368484904457018, −8.342343159198228379869204235707, −7.00131670928211950491475012751, −6.08565915592146944576062921415, −4.52895133251855484761339751576, −3.62707871477226001089143521821, −1.36727147017300784984704245039,
2.10171973999831898629061990399, 3.39169220225769022300557523908, 5.17037375587120897371023224091, 6.28673906963438353955453097504, 7.16440719309112648104559004316, 8.553638796794282041302869268102, 9.290647499409195154534740801984, 10.61862773109352978610824818578, 11.18127161619520297945610427687, 12.45651519029387809705632477844