L(s) = 1 | + (0.207 + 0.358i)3-s + (0.914 − 1.58i)5-s + (−1 − 2.44i)7-s + (1.41 − 2.44i)9-s + (1.20 + 2.09i)11-s + 2.82·13-s + 0.757·15-s + (0.0857 + 0.148i)17-s + (−3.20 + 5.55i)19-s + (0.671 − 0.866i)21-s + (2.62 − 4.54i)23-s + (0.828 + 1.43i)25-s + 2.41·27-s − 2.82·29-s + (−2.79 − 4.83i)31-s + ⋯ |
L(s) = 1 | + (0.119 + 0.207i)3-s + (0.408 − 0.708i)5-s + (−0.377 − 0.925i)7-s + (0.471 − 0.816i)9-s + (0.363 + 0.630i)11-s + 0.784·13-s + 0.195·15-s + (0.0208 + 0.0360i)17-s + (−0.735 + 1.27i)19-s + (0.146 − 0.188i)21-s + (0.546 − 0.946i)23-s + (0.165 + 0.286i)25-s + 0.464·27-s − 0.525·29-s + (−0.501 − 0.868i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.827 + 0.561i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.827 + 0.561i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.28976 - 0.396304i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.28976 - 0.396304i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (1 + 2.44i)T \) |
good | 3 | \( 1 + (-0.207 - 0.358i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-0.914 + 1.58i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.20 - 2.09i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 2.82T + 13T^{2} \) |
| 17 | \( 1 + (-0.0857 - 0.148i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3.20 - 5.55i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.62 + 4.54i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 2.82T + 29T^{2} \) |
| 31 | \( 1 + (2.79 + 4.83i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (4.32 - 7.49i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 6.82T + 41T^{2} \) |
| 43 | \( 1 - 9.65T + 43T^{2} \) |
| 47 | \( 1 + (5.20 - 9.01i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.5 - 0.866i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (5.44 + 9.43i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4.32 - 7.49i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.37 - 2.38i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 13.6T + 71T^{2} \) |
| 73 | \( 1 + (-7.32 - 12.6i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (3.03 - 5.25i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 7.31T + 83T^{2} \) |
| 89 | \( 1 + (-4.5 + 7.79i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 1.17T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.53597386128235055752458637300, −11.07843385034119615610633324111, −10.05561745447979236665110637190, −9.377272580032704368484904457018, −8.342343159198228379869204235707, −7.00131670928211950491475012751, −6.08565915592146944576062921415, −4.52895133251855484761339751576, −3.62707871477226001089143521821, −1.36727147017300784984704245039,
2.10171973999831898629061990399, 3.39169220225769022300557523908, 5.17037375587120897371023224091, 6.28673906963438353955453097504, 7.16440719309112648104559004316, 8.553638796794282041302869268102, 9.290647499409195154534740801984, 10.61862773109352978610824818578, 11.18127161619520297945610427687, 12.45651519029387809705632477844