Properties

Label 2-224-7.2-c1-0-5
Degree 22
Conductor 224224
Sign 0.827+0.561i0.827 + 0.561i
Analytic cond. 1.788641.78864
Root an. cond. 1.337401.33740
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.207 + 0.358i)3-s + (0.914 − 1.58i)5-s + (−1 − 2.44i)7-s + (1.41 − 2.44i)9-s + (1.20 + 2.09i)11-s + 2.82·13-s + 0.757·15-s + (0.0857 + 0.148i)17-s + (−3.20 + 5.55i)19-s + (0.671 − 0.866i)21-s + (2.62 − 4.54i)23-s + (0.828 + 1.43i)25-s + 2.41·27-s − 2.82·29-s + (−2.79 − 4.83i)31-s + ⋯
L(s)  = 1  + (0.119 + 0.207i)3-s + (0.408 − 0.708i)5-s + (−0.377 − 0.925i)7-s + (0.471 − 0.816i)9-s + (0.363 + 0.630i)11-s + 0.784·13-s + 0.195·15-s + (0.0208 + 0.0360i)17-s + (−0.735 + 1.27i)19-s + (0.146 − 0.188i)21-s + (0.546 − 0.946i)23-s + (0.165 + 0.286i)25-s + 0.464·27-s − 0.525·29-s + (−0.501 − 0.868i)31-s + ⋯

Functional equation

Λ(s)=(224s/2ΓC(s)L(s)=((0.827+0.561i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.827 + 0.561i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(224s/2ΓC(s+1/2)L(s)=((0.827+0.561i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.827 + 0.561i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 224224    =    2572^{5} \cdot 7
Sign: 0.827+0.561i0.827 + 0.561i
Analytic conductor: 1.788641.78864
Root analytic conductor: 1.337401.33740
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ224(65,)\chi_{224} (65, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 224, ( :1/2), 0.827+0.561i)(2,\ 224,\ (\ :1/2),\ 0.827 + 0.561i)

Particular Values

L(1)L(1) \approx 1.289760.396304i1.28976 - 0.396304i
L(12)L(\frac12) \approx 1.289760.396304i1.28976 - 0.396304i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
7 1+(1+2.44i)T 1 + (1 + 2.44i)T
good3 1+(0.2070.358i)T+(1.5+2.59i)T2 1 + (-0.207 - 0.358i)T + (-1.5 + 2.59i)T^{2}
5 1+(0.914+1.58i)T+(2.54.33i)T2 1 + (-0.914 + 1.58i)T + (-2.5 - 4.33i)T^{2}
11 1+(1.202.09i)T+(5.5+9.52i)T2 1 + (-1.20 - 2.09i)T + (-5.5 + 9.52i)T^{2}
13 12.82T+13T2 1 - 2.82T + 13T^{2}
17 1+(0.08570.148i)T+(8.5+14.7i)T2 1 + (-0.0857 - 0.148i)T + (-8.5 + 14.7i)T^{2}
19 1+(3.205.55i)T+(9.516.4i)T2 1 + (3.20 - 5.55i)T + (-9.5 - 16.4i)T^{2}
23 1+(2.62+4.54i)T+(11.519.9i)T2 1 + (-2.62 + 4.54i)T + (-11.5 - 19.9i)T^{2}
29 1+2.82T+29T2 1 + 2.82T + 29T^{2}
31 1+(2.79+4.83i)T+(15.5+26.8i)T2 1 + (2.79 + 4.83i)T + (-15.5 + 26.8i)T^{2}
37 1+(4.327.49i)T+(18.532.0i)T2 1 + (4.32 - 7.49i)T + (-18.5 - 32.0i)T^{2}
41 1+6.82T+41T2 1 + 6.82T + 41T^{2}
43 19.65T+43T2 1 - 9.65T + 43T^{2}
47 1+(5.209.01i)T+(23.540.7i)T2 1 + (5.20 - 9.01i)T + (-23.5 - 40.7i)T^{2}
53 1+(0.50.866i)T+(26.5+45.8i)T2 1 + (-0.5 - 0.866i)T + (-26.5 + 45.8i)T^{2}
59 1+(5.44+9.43i)T+(29.5+51.0i)T2 1 + (5.44 + 9.43i)T + (-29.5 + 51.0i)T^{2}
61 1+(4.327.49i)T+(30.552.8i)T2 1 + (4.32 - 7.49i)T + (-30.5 - 52.8i)T^{2}
67 1+(1.372.38i)T+(33.5+58.0i)T2 1 + (-1.37 - 2.38i)T + (-33.5 + 58.0i)T^{2}
71 113.6T+71T2 1 - 13.6T + 71T^{2}
73 1+(7.3212.6i)T+(36.5+63.2i)T2 1 + (-7.32 - 12.6i)T + (-36.5 + 63.2i)T^{2}
79 1+(3.035.25i)T+(39.568.4i)T2 1 + (3.03 - 5.25i)T + (-39.5 - 68.4i)T^{2}
83 1+7.31T+83T2 1 + 7.31T + 83T^{2}
89 1+(4.5+7.79i)T+(44.577.0i)T2 1 + (-4.5 + 7.79i)T + (-44.5 - 77.0i)T^{2}
97 1+1.17T+97T2 1 + 1.17T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.53597386128235055752458637300, −11.07843385034119615610633324111, −10.05561745447979236665110637190, −9.377272580032704368484904457018, −8.342343159198228379869204235707, −7.00131670928211950491475012751, −6.08565915592146944576062921415, −4.52895133251855484761339751576, −3.62707871477226001089143521821, −1.36727147017300784984704245039, 2.10171973999831898629061990399, 3.39169220225769022300557523908, 5.17037375587120897371023224091, 6.28673906963438353955453097504, 7.16440719309112648104559004316, 8.553638796794282041302869268102, 9.290647499409195154534740801984, 10.61862773109352978610824818578, 11.18127161619520297945610427687, 12.45651519029387809705632477844

Graph of the ZZ-function along the critical line