L(s) = 1 | + (−1.41 − 0.0115i)2-s + (−0.129 + 0.313i)3-s + (1.99 + 0.0327i)4-s + (−1.65 + 0.685i)5-s + (0.187 − 0.441i)6-s + (0.707 − 0.707i)7-s + (−2.82 − 0.0694i)8-s + (2.03 + 2.03i)9-s + (2.34 − 0.950i)10-s + (1.46 + 3.54i)11-s + (−0.269 + 0.622i)12-s + (−3.18 − 1.31i)13-s + (−1.00 + 0.991i)14-s − 0.608i·15-s + (3.99 + 0.130i)16-s + 5.24i·17-s + ⋯ |
L(s) = 1 | + (−0.999 − 0.00818i)2-s + (−0.0749 + 0.181i)3-s + (0.999 + 0.0163i)4-s + (−0.740 + 0.306i)5-s + (0.0764 − 0.180i)6-s + (0.267 − 0.267i)7-s + (−0.999 − 0.0245i)8-s + (0.679 + 0.679i)9-s + (0.742 − 0.300i)10-s + (0.442 + 1.06i)11-s + (−0.0779 + 0.179i)12-s + (−0.882 − 0.365i)13-s + (−0.269 + 0.265i)14-s − 0.157i·15-s + (0.999 + 0.0327i)16-s + 1.27i·17-s + ⋯ |
Λ(s)=(=(224s/2ΓC(s)L(s)(0.235−0.971i)Λ(2−s)
Λ(s)=(=(224s/2ΓC(s+1/2)L(s)(0.235−0.971i)Λ(1−s)
Degree: |
2 |
Conductor: |
224
= 25⋅7
|
Sign: |
0.235−0.971i
|
Analytic conductor: |
1.78864 |
Root analytic conductor: |
1.33740 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ224(141,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 224, ( :1/2), 0.235−0.971i)
|
Particular Values
L(1) |
≈ |
0.529715+0.416880i |
L(21) |
≈ |
0.529715+0.416880i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.41+0.0115i)T |
| 7 | 1+(−0.707+0.707i)T |
good | 3 | 1+(0.129−0.313i)T+(−2.12−2.12i)T2 |
| 5 | 1+(1.65−0.685i)T+(3.53−3.53i)T2 |
| 11 | 1+(−1.46−3.54i)T+(−7.77+7.77i)T2 |
| 13 | 1+(3.18+1.31i)T+(9.19+9.19i)T2 |
| 17 | 1−5.24iT−17T2 |
| 19 | 1+(−0.490−0.203i)T+(13.4+13.4i)T2 |
| 23 | 1+(−5.03−5.03i)T+23iT2 |
| 29 | 1+(1.56−3.76i)T+(−20.5−20.5i)T2 |
| 31 | 1−7.16T+31T2 |
| 37 | 1+(−0.813+0.336i)T+(26.1−26.1i)T2 |
| 41 | 1+(5.83+5.83i)T+41iT2 |
| 43 | 1+(−0.0662−0.159i)T+(−30.4+30.4i)T2 |
| 47 | 1+11.3iT−47T2 |
| 53 | 1+(4.75+11.4i)T+(−37.4+37.4i)T2 |
| 59 | 1+(−11.2+4.64i)T+(41.7−41.7i)T2 |
| 61 | 1+(2.04−4.94i)T+(−43.1−43.1i)T2 |
| 67 | 1+(0.461−1.11i)T+(−47.3−47.3i)T2 |
| 71 | 1+(0.00269−0.00269i)T−71iT2 |
| 73 | 1+(−2.92−2.92i)T+73iT2 |
| 79 | 1+7.96iT−79T2 |
| 83 | 1+(6.66+2.76i)T+(58.6+58.6i)T2 |
| 89 | 1+(2.79−2.79i)T−89iT2 |
| 97 | 1−16.0T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.15643201652121429419794873279, −11.32023770788148778989006290349, −10.34643440949824235101272678760, −9.772428713839357297429533317475, −8.414489583701788032760650080409, −7.45283494231335476668792491328, −6.93540486921475984146230616438, −5.12537203157789210999841639350, −3.67921423030455831836300220592, −1.82691976295309931830506841079,
0.819643404740775601678555730480, 2.87445120760820852139278729719, 4.56038538318944091262394926955, 6.24415231796349565778800637432, 7.18505355319716828505667229374, 8.152902349465165965862794399632, 9.091134292274302939922175224208, 9.887831910967790833970763552489, 11.26687104917174148437405462932, 11.80587442157087844738314514480