L(s) = 1 | + (−1.41 − 0.0115i)2-s + (−0.129 + 0.313i)3-s + (1.99 + 0.0327i)4-s + (−1.65 + 0.685i)5-s + (0.187 − 0.441i)6-s + (0.707 − 0.707i)7-s + (−2.82 − 0.0694i)8-s + (2.03 + 2.03i)9-s + (2.34 − 0.950i)10-s + (1.46 + 3.54i)11-s + (−0.269 + 0.622i)12-s + (−3.18 − 1.31i)13-s + (−1.00 + 0.991i)14-s − 0.608i·15-s + (3.99 + 0.130i)16-s + 5.24i·17-s + ⋯ |
L(s) = 1 | + (−0.999 − 0.00818i)2-s + (−0.0749 + 0.181i)3-s + (0.999 + 0.0163i)4-s + (−0.740 + 0.306i)5-s + (0.0764 − 0.180i)6-s + (0.267 − 0.267i)7-s + (−0.999 − 0.0245i)8-s + (0.679 + 0.679i)9-s + (0.742 − 0.300i)10-s + (0.442 + 1.06i)11-s + (−0.0779 + 0.179i)12-s + (−0.882 − 0.365i)13-s + (−0.269 + 0.265i)14-s − 0.157i·15-s + (0.999 + 0.0327i)16-s + 1.27i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.235 - 0.971i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.235 - 0.971i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.529715 + 0.416880i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.529715 + 0.416880i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.41 + 0.0115i)T \) |
| 7 | \( 1 + (-0.707 + 0.707i)T \) |
good | 3 | \( 1 + (0.129 - 0.313i)T + (-2.12 - 2.12i)T^{2} \) |
| 5 | \( 1 + (1.65 - 0.685i)T + (3.53 - 3.53i)T^{2} \) |
| 11 | \( 1 + (-1.46 - 3.54i)T + (-7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 + (3.18 + 1.31i)T + (9.19 + 9.19i)T^{2} \) |
| 17 | \( 1 - 5.24iT - 17T^{2} \) |
| 19 | \( 1 + (-0.490 - 0.203i)T + (13.4 + 13.4i)T^{2} \) |
| 23 | \( 1 + (-5.03 - 5.03i)T + 23iT^{2} \) |
| 29 | \( 1 + (1.56 - 3.76i)T + (-20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 - 7.16T + 31T^{2} \) |
| 37 | \( 1 + (-0.813 + 0.336i)T + (26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (5.83 + 5.83i)T + 41iT^{2} \) |
| 43 | \( 1 + (-0.0662 - 0.159i)T + (-30.4 + 30.4i)T^{2} \) |
| 47 | \( 1 + 11.3iT - 47T^{2} \) |
| 53 | \( 1 + (4.75 + 11.4i)T + (-37.4 + 37.4i)T^{2} \) |
| 59 | \( 1 + (-11.2 + 4.64i)T + (41.7 - 41.7i)T^{2} \) |
| 61 | \( 1 + (2.04 - 4.94i)T + (-43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 + (0.461 - 1.11i)T + (-47.3 - 47.3i)T^{2} \) |
| 71 | \( 1 + (0.00269 - 0.00269i)T - 71iT^{2} \) |
| 73 | \( 1 + (-2.92 - 2.92i)T + 73iT^{2} \) |
| 79 | \( 1 + 7.96iT - 79T^{2} \) |
| 83 | \( 1 + (6.66 + 2.76i)T + (58.6 + 58.6i)T^{2} \) |
| 89 | \( 1 + (2.79 - 2.79i)T - 89iT^{2} \) |
| 97 | \( 1 - 16.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.15643201652121429419794873279, −11.32023770788148778989006290349, −10.34643440949824235101272678760, −9.772428713839357297429533317475, −8.414489583701788032760650080409, −7.45283494231335476668792491328, −6.93540486921475984146230616438, −5.12537203157789210999841639350, −3.67921423030455831836300220592, −1.82691976295309931830506841079,
0.819643404740775601678555730480, 2.87445120760820852139278729719, 4.56038538318944091262394926955, 6.24415231796349565778800637432, 7.18505355319716828505667229374, 8.152902349465165965862794399632, 9.091134292274302939922175224208, 9.887831910967790833970763552489, 11.26687104917174148437405462932, 11.80587442157087844738314514480