L(s) = 1 | + (1.35 − 0.416i)2-s + (−0.244 + 0.590i)3-s + (1.65 − 1.12i)4-s + (−0.220 + 0.0913i)5-s + (−0.0844 + 0.899i)6-s + (0.707 − 0.707i)7-s + (1.76 − 2.21i)8-s + (1.83 + 1.83i)9-s + (−0.259 + 0.215i)10-s + (−0.352 − 0.851i)11-s + (0.260 + 1.25i)12-s + (−1.31 − 0.545i)13-s + (0.660 − 1.25i)14-s − 0.152i·15-s + (1.46 − 3.72i)16-s + 3.60i·17-s + ⋯ |
L(s) = 1 | + (0.955 − 0.294i)2-s + (−0.141 + 0.340i)3-s + (0.826 − 0.563i)4-s + (−0.0986 + 0.0408i)5-s + (−0.0344 + 0.367i)6-s + (0.267 − 0.267i)7-s + (0.623 − 0.781i)8-s + (0.610 + 0.610i)9-s + (−0.0821 + 0.0680i)10-s + (−0.106 − 0.256i)11-s + (0.0752 + 0.361i)12-s + (−0.365 − 0.151i)13-s + (0.176 − 0.334i)14-s − 0.0393i·15-s + (0.365 − 0.930i)16-s + 0.874i·17-s + ⋯ |
Λ(s)=(=(224s/2ΓC(s)L(s)(0.963+0.268i)Λ(2−s)
Λ(s)=(=(224s/2ΓC(s+1/2)L(s)(0.963+0.268i)Λ(1−s)
Degree: |
2 |
Conductor: |
224
= 25⋅7
|
Sign: |
0.963+0.268i
|
Analytic conductor: |
1.78864 |
Root analytic conductor: |
1.33740 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ224(141,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 224, ( :1/2), 0.963+0.268i)
|
Particular Values
L(1) |
≈ |
2.01176−0.274746i |
L(21) |
≈ |
2.01176−0.274746i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.35+0.416i)T |
| 7 | 1+(−0.707+0.707i)T |
good | 3 | 1+(0.244−0.590i)T+(−2.12−2.12i)T2 |
| 5 | 1+(0.220−0.0913i)T+(3.53−3.53i)T2 |
| 11 | 1+(0.352+0.851i)T+(−7.77+7.77i)T2 |
| 13 | 1+(1.31+0.545i)T+(9.19+9.19i)T2 |
| 17 | 1−3.60iT−17T2 |
| 19 | 1+(3.74+1.55i)T+(13.4+13.4i)T2 |
| 23 | 1+(0.802+0.802i)T+23iT2 |
| 29 | 1+(−0.583+1.40i)T+(−20.5−20.5i)T2 |
| 31 | 1+5.77T+31T2 |
| 37 | 1+(2.19−0.910i)T+(26.1−26.1i)T2 |
| 41 | 1+(−4.11−4.11i)T+41iT2 |
| 43 | 1+(2.07+5.01i)T+(−30.4+30.4i)T2 |
| 47 | 1+0.582iT−47T2 |
| 53 | 1+(−1.75−4.23i)T+(−37.4+37.4i)T2 |
| 59 | 1+(7.70−3.19i)T+(41.7−41.7i)T2 |
| 61 | 1+(−4.59+11.0i)T+(−43.1−43.1i)T2 |
| 67 | 1+(3.28−7.92i)T+(−47.3−47.3i)T2 |
| 71 | 1+(−10.8+10.8i)T−71iT2 |
| 73 | 1+(−9.19−9.19i)T+73iT2 |
| 79 | 1−5.19iT−79T2 |
| 83 | 1+(−9.73−4.03i)T+(58.6+58.6i)T2 |
| 89 | 1+(−7.11+7.11i)T−89iT2 |
| 97 | 1+13.2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.36417639337934564793192241152, −11.12113616659095776415195394727, −10.64974138491144678528213421348, −9.650984841815102216790557545525, −8.041428058190397849579081672509, −7.00124183753048856493982514406, −5.74147636254752211161488733196, −4.67767210462556832887335887388, −3.71740997542298460032190757018, −1.99237847481692191168527346196,
2.12754267525031540590401772199, 3.80253688787973389638418188913, 4.92157451474387310511121395082, 6.12890791451371851088770287969, 7.08167428759787283357379099534, 7.963349491414491729402884347008, 9.338374010993986115330071882629, 10.62033954122241356963336672360, 11.76827995096902210031748365209, 12.33900822016598049338605674513