L(s) = 1 | + (−0.539 + 1.30i)2-s + (−0.149 + 0.360i)3-s + (−1.41 − 1.40i)4-s + (2.11 − 0.876i)5-s + (−0.390 − 0.389i)6-s + (0.707 − 0.707i)7-s + (2.60 − 1.09i)8-s + (2.01 + 2.01i)9-s + (0.00537 + 3.23i)10-s + (−0.619 − 1.49i)11-s + (0.719 − 0.300i)12-s + (2.00 + 0.829i)13-s + (0.543 + 1.30i)14-s + 0.892i·15-s + (0.0265 + 3.99i)16-s + 2.15i·17-s + ⋯ |
L(s) = 1 | + (−0.381 + 0.924i)2-s + (−0.0861 + 0.208i)3-s + (−0.709 − 0.704i)4-s + (0.945 − 0.391i)5-s + (−0.159 − 0.158i)6-s + (0.267 − 0.267i)7-s + (0.921 − 0.387i)8-s + (0.671 + 0.671i)9-s + (0.00169 + 1.02i)10-s + (−0.186 − 0.450i)11-s + (0.207 − 0.0868i)12-s + (0.555 + 0.230i)13-s + (0.145 + 0.348i)14-s + 0.230i·15-s + (0.00663 + 0.999i)16-s + 0.522i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.548 - 0.836i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.548 - 0.836i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.00661 + 0.543429i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.00661 + 0.543429i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.539 - 1.30i)T \) |
| 7 | \( 1 + (-0.707 + 0.707i)T \) |
good | 3 | \( 1 + (0.149 - 0.360i)T + (-2.12 - 2.12i)T^{2} \) |
| 5 | \( 1 + (-2.11 + 0.876i)T + (3.53 - 3.53i)T^{2} \) |
| 11 | \( 1 + (0.619 + 1.49i)T + (-7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 + (-2.00 - 0.829i)T + (9.19 + 9.19i)T^{2} \) |
| 17 | \( 1 - 2.15iT - 17T^{2} \) |
| 19 | \( 1 + (-1.09 - 0.453i)T + (13.4 + 13.4i)T^{2} \) |
| 23 | \( 1 + (1.44 + 1.44i)T + 23iT^{2} \) |
| 29 | \( 1 + (0.483 - 1.16i)T + (-20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + 0.217T + 31T^{2} \) |
| 37 | \( 1 + (-9.82 + 4.06i)T + (26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (4.75 + 4.75i)T + 41iT^{2} \) |
| 43 | \( 1 + (1.88 + 4.55i)T + (-30.4 + 30.4i)T^{2} \) |
| 47 | \( 1 - 6.77iT - 47T^{2} \) |
| 53 | \( 1 + (2.22 + 5.37i)T + (-37.4 + 37.4i)T^{2} \) |
| 59 | \( 1 + (6.35 - 2.63i)T + (41.7 - 41.7i)T^{2} \) |
| 61 | \( 1 + (1.20 - 2.90i)T + (-43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 + (-5.29 + 12.7i)T + (-47.3 - 47.3i)T^{2} \) |
| 71 | \( 1 + (7.30 - 7.30i)T - 71iT^{2} \) |
| 73 | \( 1 + (9.12 + 9.12i)T + 73iT^{2} \) |
| 79 | \( 1 - 5.17iT - 79T^{2} \) |
| 83 | \( 1 + (15.2 + 6.29i)T + (58.6 + 58.6i)T^{2} \) |
| 89 | \( 1 + (9.77 - 9.77i)T - 89iT^{2} \) |
| 97 | \( 1 + 12.5T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.80629526840971724977687640398, −11.05890701979596525204847750229, −10.26018046201443735966098569740, −9.420297283834945834971373608728, −8.425230778718341434075129686948, −7.45383361524184311350374965287, −6.18601899253058517847373247085, −5.33687160352878086027549000896, −4.20541938369134733408710340579, −1.60056577421926252355573147393,
1.52917719245709547359565113296, 2.90375194813822476755865130640, 4.44164614841454479882458164957, 5.89132953206478689195814449567, 7.16115690482810726282917003991, 8.341752092609066090678925535953, 9.634096405998284376860499310681, 9.939959015562660156169598837960, 11.17121777899031712003885337694, 11.98566440572076954420861961267