Properties

Label 2-224-32.13-c1-0-10
Degree 22
Conductor 224224
Sign 0.5480.836i0.548 - 0.836i
Analytic cond. 1.788641.78864
Root an. cond. 1.337401.33740
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.539 + 1.30i)2-s + (−0.149 + 0.360i)3-s + (−1.41 − 1.40i)4-s + (2.11 − 0.876i)5-s + (−0.390 − 0.389i)6-s + (0.707 − 0.707i)7-s + (2.60 − 1.09i)8-s + (2.01 + 2.01i)9-s + (0.00537 + 3.23i)10-s + (−0.619 − 1.49i)11-s + (0.719 − 0.300i)12-s + (2.00 + 0.829i)13-s + (0.543 + 1.30i)14-s + 0.892i·15-s + (0.0265 + 3.99i)16-s + 2.15i·17-s + ⋯
L(s)  = 1  + (−0.381 + 0.924i)2-s + (−0.0861 + 0.208i)3-s + (−0.709 − 0.704i)4-s + (0.945 − 0.391i)5-s + (−0.159 − 0.158i)6-s + (0.267 − 0.267i)7-s + (0.921 − 0.387i)8-s + (0.671 + 0.671i)9-s + (0.00169 + 1.02i)10-s + (−0.186 − 0.450i)11-s + (0.207 − 0.0868i)12-s + (0.555 + 0.230i)13-s + (0.145 + 0.348i)14-s + 0.230i·15-s + (0.00663 + 0.999i)16-s + 0.522i·17-s + ⋯

Functional equation

Λ(s)=(224s/2ΓC(s)L(s)=((0.5480.836i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.548 - 0.836i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(224s/2ΓC(s+1/2)L(s)=((0.5480.836i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.548 - 0.836i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 224224    =    2572^{5} \cdot 7
Sign: 0.5480.836i0.548 - 0.836i
Analytic conductor: 1.788641.78864
Root analytic conductor: 1.337401.33740
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ224(141,)\chi_{224} (141, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 224, ( :1/2), 0.5480.836i)(2,\ 224,\ (\ :1/2),\ 0.548 - 0.836i)

Particular Values

L(1)L(1) \approx 1.00661+0.543429i1.00661 + 0.543429i
L(12)L(\frac12) \approx 1.00661+0.543429i1.00661 + 0.543429i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.5391.30i)T 1 + (0.539 - 1.30i)T
7 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
good3 1+(0.1490.360i)T+(2.122.12i)T2 1 + (0.149 - 0.360i)T + (-2.12 - 2.12i)T^{2}
5 1+(2.11+0.876i)T+(3.533.53i)T2 1 + (-2.11 + 0.876i)T + (3.53 - 3.53i)T^{2}
11 1+(0.619+1.49i)T+(7.77+7.77i)T2 1 + (0.619 + 1.49i)T + (-7.77 + 7.77i)T^{2}
13 1+(2.000.829i)T+(9.19+9.19i)T2 1 + (-2.00 - 0.829i)T + (9.19 + 9.19i)T^{2}
17 12.15iT17T2 1 - 2.15iT - 17T^{2}
19 1+(1.090.453i)T+(13.4+13.4i)T2 1 + (-1.09 - 0.453i)T + (13.4 + 13.4i)T^{2}
23 1+(1.44+1.44i)T+23iT2 1 + (1.44 + 1.44i)T + 23iT^{2}
29 1+(0.4831.16i)T+(20.520.5i)T2 1 + (0.483 - 1.16i)T + (-20.5 - 20.5i)T^{2}
31 1+0.217T+31T2 1 + 0.217T + 31T^{2}
37 1+(9.82+4.06i)T+(26.126.1i)T2 1 + (-9.82 + 4.06i)T + (26.1 - 26.1i)T^{2}
41 1+(4.75+4.75i)T+41iT2 1 + (4.75 + 4.75i)T + 41iT^{2}
43 1+(1.88+4.55i)T+(30.4+30.4i)T2 1 + (1.88 + 4.55i)T + (-30.4 + 30.4i)T^{2}
47 16.77iT47T2 1 - 6.77iT - 47T^{2}
53 1+(2.22+5.37i)T+(37.4+37.4i)T2 1 + (2.22 + 5.37i)T + (-37.4 + 37.4i)T^{2}
59 1+(6.352.63i)T+(41.741.7i)T2 1 + (6.35 - 2.63i)T + (41.7 - 41.7i)T^{2}
61 1+(1.202.90i)T+(43.143.1i)T2 1 + (1.20 - 2.90i)T + (-43.1 - 43.1i)T^{2}
67 1+(5.29+12.7i)T+(47.347.3i)T2 1 + (-5.29 + 12.7i)T + (-47.3 - 47.3i)T^{2}
71 1+(7.307.30i)T71iT2 1 + (7.30 - 7.30i)T - 71iT^{2}
73 1+(9.12+9.12i)T+73iT2 1 + (9.12 + 9.12i)T + 73iT^{2}
79 15.17iT79T2 1 - 5.17iT - 79T^{2}
83 1+(15.2+6.29i)T+(58.6+58.6i)T2 1 + (15.2 + 6.29i)T + (58.6 + 58.6i)T^{2}
89 1+(9.779.77i)T89iT2 1 + (9.77 - 9.77i)T - 89iT^{2}
97 1+12.5T+97T2 1 + 12.5T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.80629526840971724977687640398, −11.05890701979596525204847750229, −10.26018046201443735966098569740, −9.420297283834945834971373608728, −8.425230778718341434075129686948, −7.45383361524184311350374965287, −6.18601899253058517847373247085, −5.33687160352878086027549000896, −4.20541938369134733408710340579, −1.60056577421926252355573147393, 1.52917719245709547359565113296, 2.90375194813822476755865130640, 4.44164614841454479882458164957, 5.89132953206478689195814449567, 7.16115690482810726282917003991, 8.341752092609066090678925535953, 9.634096405998284376860499310681, 9.939959015562660156169598837960, 11.17121777899031712003885337694, 11.98566440572076954420861961267

Graph of the ZZ-function along the critical line