L(s) = 1 | + (−1.39 − 0.230i)2-s + (−3.03 − 1.25i)3-s + (1.89 + 0.643i)4-s + (0.551 + 1.33i)5-s + (3.94 + 2.45i)6-s + (−0.707 + 0.707i)7-s + (−2.49 − 1.33i)8-s + (5.50 + 5.50i)9-s + (−0.462 − 1.98i)10-s + (−0.508 + 0.210i)11-s + (−4.93 − 4.33i)12-s + (1.29 − 3.13i)13-s + (1.14 − 0.823i)14-s − 4.73i·15-s + (3.17 + 2.43i)16-s − 3.89i·17-s + ⋯ |
L(s) = 1 | + (−0.986 − 0.163i)2-s + (−1.75 − 0.725i)3-s + (0.946 + 0.321i)4-s + (0.246 + 0.595i)5-s + (1.61 + 1.00i)6-s + (−0.267 + 0.267i)7-s + (−0.881 − 0.471i)8-s + (1.83 + 1.83i)9-s + (−0.146 − 0.627i)10-s + (−0.153 + 0.0635i)11-s + (−1.42 − 1.25i)12-s + (0.360 − 0.869i)13-s + (0.307 − 0.220i)14-s − 1.22i·15-s + (0.793 + 0.609i)16-s − 0.944i·17-s + ⋯ |
Λ(s)=(=(224s/2ΓC(s)L(s)(0.527+0.849i)Λ(2−s)
Λ(s)=(=(224s/2ΓC(s+1/2)L(s)(0.527+0.849i)Λ(1−s)
Degree: |
2 |
Conductor: |
224
= 25⋅7
|
Sign: |
0.527+0.849i
|
Analytic conductor: |
1.78864 |
Root analytic conductor: |
1.33740 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ224(29,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 224, ( :1/2), 0.527+0.849i)
|
Particular Values
L(1) |
≈ |
0.390258−0.217038i |
L(21) |
≈ |
0.390258−0.217038i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.39+0.230i)T |
| 7 | 1+(0.707−0.707i)T |
good | 3 | 1+(3.03+1.25i)T+(2.12+2.12i)T2 |
| 5 | 1+(−0.551−1.33i)T+(−3.53+3.53i)T2 |
| 11 | 1+(0.508−0.210i)T+(7.77−7.77i)T2 |
| 13 | 1+(−1.29+3.13i)T+(−9.19−9.19i)T2 |
| 17 | 1+3.89iT−17T2 |
| 19 | 1+(−2.18+5.28i)T+(−13.4−13.4i)T2 |
| 23 | 1+(−3.28−3.28i)T+23iT2 |
| 29 | 1+(5.84+2.42i)T+(20.5+20.5i)T2 |
| 31 | 1−7.47T+31T2 |
| 37 | 1+(−2.00−4.83i)T+(−26.1+26.1i)T2 |
| 41 | 1+(−2.71−2.71i)T+41iT2 |
| 43 | 1+(−5.33+2.20i)T+(30.4−30.4i)T2 |
| 47 | 1−3.49iT−47T2 |
| 53 | 1+(−8.42+3.49i)T+(37.4−37.4i)T2 |
| 59 | 1+(3.20+7.73i)T+(−41.7+41.7i)T2 |
| 61 | 1+(1.33+0.554i)T+(43.1+43.1i)T2 |
| 67 | 1+(−9.53−3.94i)T+(47.3+47.3i)T2 |
| 71 | 1+(−7.97+7.97i)T−71iT2 |
| 73 | 1+(9.49+9.49i)T+73iT2 |
| 79 | 1+5.36iT−79T2 |
| 83 | 1+(6.45−15.5i)T+(−58.6−58.6i)T2 |
| 89 | 1+(0.200−0.200i)T−89iT2 |
| 97 | 1−6.47T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.70673046331558625199185015157, −11.19045503203091727308113355759, −10.39431644089131241232230481127, −9.455458889718633677983208421918, −7.81631433379077509576809174276, −6.97291898580437526752683307398, −6.22274619818210272138754310759, −5.18022829710251644046078302120, −2.67885288151935544985029575324, −0.78748888238355980547171462934,
1.16016815682476189996781967171, 4.05877797658601182146429201318, 5.45786679750590722034045566163, 6.17479855752869090142560525458, 7.19544419147975215436335534599, 8.783237582730334187977848072033, 9.688695915651262297570180749778, 10.48934705113844988999996549520, 11.15936594451774573682524109396, 12.09320098047866831267470500661