L(s) = 1 | + (−0.420 − 1.35i)2-s + (2.28 + 0.946i)3-s + (−1.64 + 1.13i)4-s + (0.446 + 1.07i)5-s + (0.316 − 3.48i)6-s + (−0.707 + 0.707i)7-s + (2.22 + 1.74i)8-s + (2.20 + 2.20i)9-s + (1.26 − 1.05i)10-s + (2.89 − 1.19i)11-s + (−4.83 + 1.03i)12-s + (1.10 − 2.65i)13-s + (1.25 + 0.657i)14-s + 2.88i·15-s + (1.41 − 3.73i)16-s + 3.12i·17-s + ⋯ |
L(s) = 1 | + (−0.297 − 0.954i)2-s + (1.31 + 0.546i)3-s + (−0.823 + 0.567i)4-s + (0.199 + 0.481i)5-s + (0.129 − 1.42i)6-s + (−0.267 + 0.267i)7-s + (0.786 + 0.616i)8-s + (0.734 + 0.734i)9-s + (0.400 − 0.333i)10-s + (0.871 − 0.361i)11-s + (−1.39 + 0.299i)12-s + (0.305 − 0.737i)13-s + (0.334 + 0.175i)14-s + 0.744i·15-s + (0.354 − 0.934i)16-s + 0.758i·17-s + ⋯ |
Λ(s)=(=(224s/2ΓC(s)L(s)(0.967+0.254i)Λ(2−s)
Λ(s)=(=(224s/2ΓC(s+1/2)L(s)(0.967+0.254i)Λ(1−s)
Degree: |
2 |
Conductor: |
224
= 25⋅7
|
Sign: |
0.967+0.254i
|
Analytic conductor: |
1.78864 |
Root analytic conductor: |
1.33740 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ224(29,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 224, ( :1/2), 0.967+0.254i)
|
Particular Values
L(1) |
≈ |
1.48180−0.191665i |
L(21) |
≈ |
1.48180−0.191665i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.420+1.35i)T |
| 7 | 1+(0.707−0.707i)T |
good | 3 | 1+(−2.28−0.946i)T+(2.12+2.12i)T2 |
| 5 | 1+(−0.446−1.07i)T+(−3.53+3.53i)T2 |
| 11 | 1+(−2.89+1.19i)T+(7.77−7.77i)T2 |
| 13 | 1+(−1.10+2.65i)T+(−9.19−9.19i)T2 |
| 17 | 1−3.12iT−17T2 |
| 19 | 1+(1.63−3.95i)T+(−13.4−13.4i)T2 |
| 23 | 1+(1.37+1.37i)T+23iT2 |
| 29 | 1+(8.15+3.37i)T+(20.5+20.5i)T2 |
| 31 | 1+2.07T+31T2 |
| 37 | 1+(2.47+5.96i)T+(−26.1+26.1i)T2 |
| 41 | 1+(5.68+5.68i)T+41iT2 |
| 43 | 1+(−5.63+2.33i)T+(30.4−30.4i)T2 |
| 47 | 1−8.41iT−47T2 |
| 53 | 1+(12.4−5.16i)T+(37.4−37.4i)T2 |
| 59 | 1+(−2.20−5.32i)T+(−41.7+41.7i)T2 |
| 61 | 1+(−4.89−2.02i)T+(43.1+43.1i)T2 |
| 67 | 1+(−8.29−3.43i)T+(47.3+47.3i)T2 |
| 71 | 1+(−6.35+6.35i)T−71iT2 |
| 73 | 1+(10.6+10.6i)T+73iT2 |
| 79 | 1−5.81iT−79T2 |
| 83 | 1+(1.91−4.62i)T+(−58.6−58.6i)T2 |
| 89 | 1+(−5.79+5.79i)T−89iT2 |
| 97 | 1−13.8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.27137396885066904687880781729, −10.94557748636939011998116246031, −10.22830564268049249689419073921, −9.292013894446044270536117356362, −8.628657093929688557906532704846, −7.71911397627063791466536126251, −5.95373136539693982063021914379, −4.02766970452384769424172380369, −3.35250040497967046038613686707, −2.09967920408832612637111031638,
1.63372582738785931005600295559, 3.64169716848360266283034707439, 4.99475732920135165807201801437, 6.64562693086589951070332328279, 7.24485934754130908292217007268, 8.402341960555268608076160067882, 9.164878183352105001720478028976, 9.640268155984212018461125683629, 11.32471952101022801504753017670, 12.88709313463125116171581893685