L(s) = 1 | + 0.321i·3-s + (−2.10 − 0.742i)5-s + i·7-s + 2.89·9-s + 4.37·11-s + 5.86i·13-s + (0.238 − 0.678i)15-s − 4.85i·17-s − 7.75·19-s − 0.321·21-s + 1.35i·23-s + (3.89 + 3.13i)25-s + 1.89i·27-s − 0.539·29-s + 2.97·31-s + ⋯ |
L(s) = 1 | + 0.185i·3-s + (−0.943 − 0.332i)5-s + 0.377i·7-s + 0.965·9-s + 1.32·11-s + 1.62i·13-s + (0.0616 − 0.175i)15-s − 1.17i·17-s − 1.77·19-s − 0.0701·21-s + 0.282i·23-s + (0.779 + 0.626i)25-s + 0.364i·27-s − 0.100·29-s + 0.533·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.332 - 0.943i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.332 - 0.943i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.465114594\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.465114594\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (2.10 + 0.742i)T \) |
| 7 | \( 1 - iT \) |
good | 3 | \( 1 - 0.321iT - 3T^{2} \) |
| 11 | \( 1 - 4.37T + 11T^{2} \) |
| 13 | \( 1 - 5.86iT - 13T^{2} \) |
| 17 | \( 1 + 4.85iT - 17T^{2} \) |
| 19 | \( 1 + 7.75T + 19T^{2} \) |
| 23 | \( 1 - 1.35iT - 23T^{2} \) |
| 29 | \( 1 + 0.539T + 29T^{2} \) |
| 31 | \( 1 - 2.97T + 31T^{2} \) |
| 37 | \( 1 + 6.26iT - 37T^{2} \) |
| 41 | \( 1 - 2.64T + 41T^{2} \) |
| 43 | \( 1 - 4.64iT - 43T^{2} \) |
| 47 | \( 1 - 10.3iT - 47T^{2} \) |
| 53 | \( 1 + 0.477iT - 53T^{2} \) |
| 59 | \( 1 - 7.75T + 59T^{2} \) |
| 61 | \( 1 + 7.57T + 61T^{2} \) |
| 67 | \( 1 - 3.79iT - 67T^{2} \) |
| 71 | \( 1 - 9.23T + 71T^{2} \) |
| 73 | \( 1 + 0.477iT - 73T^{2} \) |
| 79 | \( 1 - 1.88T + 79T^{2} \) |
| 83 | \( 1 - 15.2iT - 83T^{2} \) |
| 89 | \( 1 + 6T + 89T^{2} \) |
| 97 | \( 1 - 13.6iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.260404950172923991703700960046, −8.568073278959866068350931822771, −7.57990284718845400759662936915, −6.82671387562040942010472874569, −6.32500345932592247120896873676, −4.88360662930132680278869394981, −4.25540321350106664884965938986, −3.80795192161127660813587342976, −2.30808724706677274581712361477, −1.17119617808064601953412422157,
0.59156304385804532084819310439, 1.83553166227328797718539638765, 3.25885984458710767186569355426, 4.02235572933946471316617325942, 4.55456795228821721050777603301, 5.96144058434331793148989215389, 6.68199428368724849918548145299, 7.25369623979183009850269469117, 8.314724761261167874406036377751, 8.451498976419150457144127108582