L(s) = 1 | + 0.321i·3-s + (−2.10 − 0.742i)5-s + i·7-s + 2.89·9-s + 4.37·11-s + 5.86i·13-s + (0.238 − 0.678i)15-s − 4.85i·17-s − 7.75·19-s − 0.321·21-s + 1.35i·23-s + (3.89 + 3.13i)25-s + 1.89i·27-s − 0.539·29-s + 2.97·31-s + ⋯ |
L(s) = 1 | + 0.185i·3-s + (−0.943 − 0.332i)5-s + 0.377i·7-s + 0.965·9-s + 1.32·11-s + 1.62i·13-s + (0.0616 − 0.175i)15-s − 1.17i·17-s − 1.77·19-s − 0.0701·21-s + 0.282i·23-s + (0.779 + 0.626i)25-s + 0.364i·27-s − 0.100·29-s + 0.533·31-s + ⋯ |
Λ(s)=(=(2240s/2ΓC(s)L(s)(0.332−0.943i)Λ(2−s)
Λ(s)=(=(2240s/2ΓC(s+1/2)L(s)(0.332−0.943i)Λ(1−s)
Degree: |
2 |
Conductor: |
2240
= 26⋅5⋅7
|
Sign: |
0.332−0.943i
|
Analytic conductor: |
17.8864 |
Root analytic conductor: |
4.22924 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2240(449,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2240, ( :1/2), 0.332−0.943i)
|
Particular Values
L(1) |
≈ |
1.465114594 |
L(21) |
≈ |
1.465114594 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(2.10+0.742i)T |
| 7 | 1−iT |
good | 3 | 1−0.321iT−3T2 |
| 11 | 1−4.37T+11T2 |
| 13 | 1−5.86iT−13T2 |
| 17 | 1+4.85iT−17T2 |
| 19 | 1+7.75T+19T2 |
| 23 | 1−1.35iT−23T2 |
| 29 | 1+0.539T+29T2 |
| 31 | 1−2.97T+31T2 |
| 37 | 1+6.26iT−37T2 |
| 41 | 1−2.64T+41T2 |
| 43 | 1−4.64iT−43T2 |
| 47 | 1−10.3iT−47T2 |
| 53 | 1+0.477iT−53T2 |
| 59 | 1−7.75T+59T2 |
| 61 | 1+7.57T+61T2 |
| 67 | 1−3.79iT−67T2 |
| 71 | 1−9.23T+71T2 |
| 73 | 1+0.477iT−73T2 |
| 79 | 1−1.88T+79T2 |
| 83 | 1−15.2iT−83T2 |
| 89 | 1+6T+89T2 |
| 97 | 1−13.6iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.260404950172923991703700960046, −8.568073278959866068350931822771, −7.57990284718845400759662936915, −6.82671387562040942010472874569, −6.32500345932592247120896873676, −4.88360662930132680278869394981, −4.25540321350106664884965938986, −3.80795192161127660813587342976, −2.30808724706677274581712361477, −1.17119617808064601953412422157,
0.59156304385804532084819310439, 1.83553166227328797718539638765, 3.25885984458710767186569355426, 4.02235572933946471316617325942, 4.55456795228821721050777603301, 5.96144058434331793148989215389, 6.68199428368724849918548145299, 7.25369623979183009850269469117, 8.314724761261167874406036377751, 8.451498976419150457144127108582