L(s) = 1 | + (0.866 − 0.5i)2-s + (−0.866 + 1.5i)3-s + (−0.500 + 0.866i)4-s + 1.73i·6-s + (−2.59 + 1.5i)7-s + 3i·8-s + (−1.5 − 2.59i)9-s + (1 + 1.73i)11-s + (−0.866 − 1.5i)12-s + (−1.73 − i)13-s + (−1.5 + 2.59i)14-s + (0.500 + 0.866i)16-s + 4i·17-s + (−2.59 − 1.5i)18-s + 8·19-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (−0.499 + 0.866i)3-s + (−0.250 + 0.433i)4-s + 0.707i·6-s + (−0.981 + 0.566i)7-s + 1.06i·8-s + (−0.5 − 0.866i)9-s + (0.301 + 0.522i)11-s + (−0.249 − 0.433i)12-s + (−0.480 − 0.277i)13-s + (−0.400 + 0.694i)14-s + (0.125 + 0.216i)16-s + 0.970i·17-s + (−0.612 − 0.353i)18-s + 1.83·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.232 - 0.972i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.232 - 0.972i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.663235 + 0.840329i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.663235 + 0.840329i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.866 - 1.5i)T \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (-0.866 + 0.5i)T + (1 - 1.73i)T^{2} \) |
| 7 | \( 1 + (2.59 - 1.5i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1 - 1.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (1.73 + i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 4iT - 17T^{2} \) |
| 19 | \( 1 - 8T + 19T^{2} \) |
| 23 | \( 1 + (-2.59 - 1.5i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 4iT - 37T^{2} \) |
| 41 | \( 1 + (2.5 - 4.33i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-6.92 + 4i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-6.06 + 3.5i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 2iT - 53T^{2} \) |
| 59 | \( 1 + (7 - 12.1i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.5 + 6.06i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.59 - 1.5i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 2T + 71T^{2} \) |
| 73 | \( 1 + 4iT - 73T^{2} \) |
| 79 | \( 1 + (3 + 5.19i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (7.79 - 4.5i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 15T + 89T^{2} \) |
| 97 | \( 1 + (-1.73 + i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.29760985805107917983992249886, −11.87981110438293629006701230438, −10.69425878423511460153382332001, −9.602821310844246444855257997651, −8.973711634705946568150305396738, −7.47395685017942830436648964286, −5.97373834221418650207816815852, −5.08743014639196802501939699801, −3.87077696061692530105290520323, −2.92472370356700460003154624998,
0.815525097298749108345657997160, 3.20299101371822093947110918609, 4.82443299653086056644195378616, 5.81671718120177359628184083453, 6.79013835701274226589800914758, 7.43938691140677565904046477327, 9.169397830076688743504235621598, 10.00654806075417124756598694700, 11.20175042978215047880288400662, 12.20249156234456946547407791098