L(s) = 1 | + (0.258 + 0.965i)2-s + (−0.866 + 0.499i)4-s + (0.866 − 0.5i)7-s + (−0.707 − 0.707i)8-s + (0.258 + 0.448i)11-s + (0.707 + 0.707i)14-s + (0.500 − 0.866i)16-s + (−0.366 + 0.366i)22-s + (−0.707 + 1.22i)23-s + (0.5 + 0.866i)25-s + (−0.5 + 0.866i)28-s + (1.22 − 0.707i)29-s + (0.965 + 0.258i)32-s + 1.73·37-s + (0.866 − 0.5i)43-s + (−0.448 − 0.258i)44-s + ⋯ |
L(s) = 1 | + (0.258 + 0.965i)2-s + (−0.866 + 0.499i)4-s + (0.866 − 0.5i)7-s + (−0.707 − 0.707i)8-s + (0.258 + 0.448i)11-s + (0.707 + 0.707i)14-s + (0.500 − 0.866i)16-s + (−0.366 + 0.366i)22-s + (−0.707 + 1.22i)23-s + (0.5 + 0.866i)25-s + (−0.5 + 0.866i)28-s + (1.22 − 0.707i)29-s + (0.965 + 0.258i)32-s + 1.73·37-s + (0.866 − 0.5i)43-s + (−0.448 − 0.258i)44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0871 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0871 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.358031428\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.358031428\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.258 - 0.965i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.866 + 0.5i)T \) |
good | 5 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.258 - 0.448i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + (0.707 - 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-1.22 + 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - 1.73T + T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 - 1.93iT - T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + 1.93T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.233206853699239033630202267032, −8.446305655237215021886722305081, −7.57378401132469505552791869221, −7.33485432899765466560848176764, −6.21351656936421063402118767998, −5.55448875738906137436331039117, −4.52931081138681978805559026796, −4.13278411068795366262171829759, −2.88613039795436815491106179330, −1.32245215164252951105350974779,
1.07282001985636962221338768360, 2.28351530978771990606124622162, 3.01440143136858838978983986230, 4.30927130118260779264627462589, 4.71486802794343878513199806105, 5.79243373364524186894161891716, 6.40857204261009688343535081379, 7.75672708094817211412654537689, 8.586674576146837852350636662391, 8.881958754868903641289227612439