L(s) = 1 | + (0.258 + 0.965i)2-s + (−0.866 + 0.499i)4-s + (0.866 − 0.5i)7-s + (−0.707 − 0.707i)8-s + (0.258 + 0.448i)11-s + (0.707 + 0.707i)14-s + (0.500 − 0.866i)16-s + (−0.366 + 0.366i)22-s + (−0.707 + 1.22i)23-s + (0.5 + 0.866i)25-s + (−0.5 + 0.866i)28-s + (1.22 − 0.707i)29-s + (0.965 + 0.258i)32-s + 1.73·37-s + (0.866 − 0.5i)43-s + (−0.448 − 0.258i)44-s + ⋯ |
L(s) = 1 | + (0.258 + 0.965i)2-s + (−0.866 + 0.499i)4-s + (0.866 − 0.5i)7-s + (−0.707 − 0.707i)8-s + (0.258 + 0.448i)11-s + (0.707 + 0.707i)14-s + (0.500 − 0.866i)16-s + (−0.366 + 0.366i)22-s + (−0.707 + 1.22i)23-s + (0.5 + 0.866i)25-s + (−0.5 + 0.866i)28-s + (1.22 − 0.707i)29-s + (0.965 + 0.258i)32-s + 1.73·37-s + (0.866 − 0.5i)43-s + (−0.448 − 0.258i)44-s + ⋯ |
Λ(s)=(=(2268s/2ΓC(s)L(s)(0.0871−0.996i)Λ(1−s)
Λ(s)=(=(2268s/2ΓC(s)L(s)(0.0871−0.996i)Λ(1−s)
Degree: |
2 |
Conductor: |
2268
= 22⋅34⋅7
|
Sign: |
0.0871−0.996i
|
Analytic conductor: |
1.13187 |
Root analytic conductor: |
1.06389 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2268(1511,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2268, ( :0), 0.0871−0.996i)
|
Particular Values
L(21) |
≈ |
1.358031428 |
L(21) |
≈ |
1.358031428 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.258−0.965i)T |
| 3 | 1 |
| 7 | 1+(−0.866+0.5i)T |
good | 5 | 1+(−0.5−0.866i)T2 |
| 11 | 1+(−0.258−0.448i)T+(−0.5+0.866i)T2 |
| 13 | 1+(0.5+0.866i)T2 |
| 17 | 1+T2 |
| 19 | 1+T2 |
| 23 | 1+(0.707−1.22i)T+(−0.5−0.866i)T2 |
| 29 | 1+(−1.22+0.707i)T+(0.5−0.866i)T2 |
| 31 | 1+(−0.5−0.866i)T2 |
| 37 | 1−1.73T+T2 |
| 41 | 1+(−0.5−0.866i)T2 |
| 43 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 47 | 1+(0.5−0.866i)T2 |
| 53 | 1−1.93iT−T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(0.5−0.866i)T2 |
| 67 | 1+(1.5+0.866i)T+(0.5+0.866i)T2 |
| 71 | 1+1.93T+T2 |
| 73 | 1−T2 |
| 79 | 1+(1.5−0.866i)T+(0.5−0.866i)T2 |
| 83 | 1+(0.5−0.866i)T2 |
| 89 | 1+T2 |
| 97 | 1+(0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.233206853699239033630202267032, −8.446305655237215021886722305081, −7.57378401132469505552791869221, −7.33485432899765466560848176764, −6.21351656936421063402118767998, −5.55448875738906137436331039117, −4.52931081138681978805559026796, −4.13278411068795366262171829759, −2.88613039795436815491106179330, −1.32245215164252951105350974779,
1.07282001985636962221338768360, 2.28351530978771990606124622162, 3.01440143136858838978983986230, 4.30927130118260779264627462589, 4.71486802794343878513199806105, 5.79243373364524186894161891716, 6.40857204261009688343535081379, 7.75672708094817211412654537689, 8.586674576146837852350636662391, 8.881958754868903641289227612439