L(s) = 1 | + (−2.00 − 3.47i)5-s + (−1.89 + 1.84i)7-s + (0.885 − 1.53i)11-s + (−0.114 + 0.198i)13-s + (3.04 + 5.27i)17-s + (−3.27 + 5.67i)19-s + (0.769 + 1.33i)23-s + (−5.55 + 9.62i)25-s + (0.271 + 0.469i)29-s + 4.55·31-s + (10.2 + 2.86i)35-s + (1.54 − 2.66i)37-s + (4.43 − 7.69i)41-s + (−2.12 − 3.67i)43-s − 0.757·47-s + ⋯ |
L(s) = 1 | + (−0.897 − 1.55i)5-s + (−0.715 + 0.698i)7-s + (0.267 − 0.462i)11-s + (−0.0317 + 0.0549i)13-s + (0.739 + 1.28i)17-s + (−0.752 + 1.30i)19-s + (0.160 + 0.277i)23-s + (−1.11 + 1.92i)25-s + (0.0503 + 0.0872i)29-s + 0.817·31-s + (1.72 + 0.484i)35-s + (0.253 − 0.438i)37-s + (0.693 − 1.20i)41-s + (−0.323 − 0.560i)43-s − 0.110·47-s + ⋯ |
Λ(s)=(=(2268s/2ΓC(s)L(s)(0.999+0.0354i)Λ(2−s)
Λ(s)=(=(2268s/2ΓC(s+1/2)L(s)(0.999+0.0354i)Λ(1−s)
Degree: |
2 |
Conductor: |
2268
= 22⋅34⋅7
|
Sign: |
0.999+0.0354i
|
Analytic conductor: |
18.1100 |
Root analytic conductor: |
4.25559 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2268(2053,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2268, ( :1/2), 0.999+0.0354i)
|
Particular Values
L(1) |
≈ |
1.173886624 |
L(21) |
≈ |
1.173886624 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(1.89−1.84i)T |
good | 5 | 1+(2.00+3.47i)T+(−2.5+4.33i)T2 |
| 11 | 1+(−0.885+1.53i)T+(−5.5−9.52i)T2 |
| 13 | 1+(0.114−0.198i)T+(−6.5−11.2i)T2 |
| 17 | 1+(−3.04−5.27i)T+(−8.5+14.7i)T2 |
| 19 | 1+(3.27−5.67i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−0.769−1.33i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−0.271−0.469i)T+(−14.5+25.1i)T2 |
| 31 | 1−4.55T+31T2 |
| 37 | 1+(−1.54+2.66i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−4.43+7.69i)T+(−20.5−35.5i)T2 |
| 43 | 1+(2.12+3.67i)T+(−21.5+37.2i)T2 |
| 47 | 1+0.757T+47T2 |
| 53 | 1+(3.19+5.53i)T+(−26.5+45.8i)T2 |
| 59 | 1−5.17T+59T2 |
| 61 | 1−12.5T+61T2 |
| 67 | 1+6.18T+67T2 |
| 71 | 1−13.9T+71T2 |
| 73 | 1+(5.08+8.81i)T+(−36.5+63.2i)T2 |
| 79 | 1−11.5T+79T2 |
| 83 | 1+(−8.66−15.0i)T+(−41.5+71.8i)T2 |
| 89 | 1+(5.04−8.73i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−4.91−8.50i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.851413996036036358783148144834, −8.307664858054532662622399289419, −7.83318694672567656772135386298, −6.55566554329002466176940494952, −5.76176291975602524304829360125, −5.14037039234412391266273016720, −3.91796135469996504475415347449, −3.63069689372264375410001919290, −2.00587021909282220706459695606, −0.794302985389181549296926861773,
0.60625718088102149626618487091, 2.62489801372902723628624452862, 3.09494794740767019956205277902, 4.07279140431633995159834112035, 4.81988652290861301554137282913, 6.34188616838061545163851131999, 6.72629448868744916537278443093, 7.38886901844042317770446777731, 7.960656910820860828972575958614, 9.144520690992196915682417034043