L(s) = 1 | + (−1.48 − 2.57i)5-s + (−2.18 + 1.49i)7-s + (4.09 + 2.36i)11-s − 4.08i·13-s + (−0.835 + 1.44i)17-s + (−4.25 + 2.45i)19-s + (−4.25 + 2.45i)23-s + (−1.91 + 3.30i)25-s − 0.275i·29-s + (1.38 + 0.801i)31-s + (7.08 + 3.40i)35-s + (−1.69 − 2.93i)37-s + 7.11·41-s − 10.4·43-s + (5.49 + 9.52i)47-s + ⋯ |
L(s) = 1 | + (−0.664 − 1.15i)5-s + (−0.825 + 0.564i)7-s + (1.23 + 0.712i)11-s − 1.13i·13-s + (−0.202 + 0.350i)17-s + (−0.975 + 0.563i)19-s + (−0.886 + 0.511i)23-s + (−0.382 + 0.661i)25-s − 0.0511i·29-s + (0.249 + 0.143i)31-s + (1.19 + 0.575i)35-s + (−0.278 − 0.483i)37-s + 1.11·41-s − 1.59·43-s + (0.802 + 1.38i)47-s + ⋯ |
Λ(s)=(=(2268s/2ΓC(s)L(s)(0.315−0.948i)Λ(2−s)
Λ(s)=(=(2268s/2ΓC(s+1/2)L(s)(0.315−0.948i)Λ(1−s)
Degree: |
2 |
Conductor: |
2268
= 22⋅34⋅7
|
Sign: |
0.315−0.948i
|
Analytic conductor: |
18.1100 |
Root analytic conductor: |
4.25559 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2268(1781,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2268, ( :1/2), 0.315−0.948i)
|
Particular Values
L(1) |
≈ |
0.8762256633 |
L(21) |
≈ |
0.8762256633 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(2.18−1.49i)T |
good | 5 | 1+(1.48+2.57i)T+(−2.5+4.33i)T2 |
| 11 | 1+(−4.09−2.36i)T+(5.5+9.52i)T2 |
| 13 | 1+4.08iT−13T2 |
| 17 | 1+(0.835−1.44i)T+(−8.5−14.7i)T2 |
| 19 | 1+(4.25−2.45i)T+(9.5−16.4i)T2 |
| 23 | 1+(4.25−2.45i)T+(11.5−19.9i)T2 |
| 29 | 1+0.275iT−29T2 |
| 31 | 1+(−1.38−0.801i)T+(15.5+26.8i)T2 |
| 37 | 1+(1.69+2.93i)T+(−18.5+32.0i)T2 |
| 41 | 1−7.11T+41T2 |
| 43 | 1+10.4T+43T2 |
| 47 | 1+(−5.49−9.52i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−0.707−0.408i)T+(26.5+45.8i)T2 |
| 59 | 1+(1.37−2.38i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−6.23+3.60i)T+(30.5−52.8i)T2 |
| 67 | 1+(5.80−10.0i)T+(−33.5−58.0i)T2 |
| 71 | 1−10.4iT−71T2 |
| 73 | 1+(−13.6−7.88i)T+(36.5+63.2i)T2 |
| 79 | 1+(−6.15−10.6i)T+(−39.5+68.4i)T2 |
| 83 | 1−8.07T+83T2 |
| 89 | 1+(−4.60−7.98i)T+(−44.5+77.0i)T2 |
| 97 | 1+8.09iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.133782055787798233146265521909, −8.414893077933915314575364665738, −7.85957996816750108791044095352, −6.77440520955830855802071679773, −6.03080862833854464530320713127, −5.23178375574838875865903117738, −4.16638791506610097211341621984, −3.71118721151742891399681893617, −2.33603021366660940710563189366, −1.07169189452388431478348008171,
0.34740718249722135407090889959, 2.07203908360582233476087489028, 3.24754487980293897243575095962, 3.83987898616740940586233413824, 4.56521522862857567614180594669, 6.17870381820314971027510652602, 6.62496685221450605689918244206, 7.03254517519833082084195980982, 8.057174571304897117444918510698, 8.957228412632442948969772383752