L(s) = 1 | + 3-s − 5-s − 2·7-s + 9-s − 4·11-s − 2·13-s − 15-s + 19-s − 2·21-s + 8·23-s + 25-s + 27-s − 2·29-s + 10·31-s − 4·33-s + 2·35-s + 6·37-s − 2·39-s + 12·41-s + 8·43-s − 45-s + 8·47-s − 3·49-s − 6·53-s + 4·55-s + 57-s − 6·59-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.447·5-s − 0.755·7-s + 1/3·9-s − 1.20·11-s − 0.554·13-s − 0.258·15-s + 0.229·19-s − 0.436·21-s + 1.66·23-s + 1/5·25-s + 0.192·27-s − 0.371·29-s + 1.79·31-s − 0.696·33-s + 0.338·35-s + 0.986·37-s − 0.320·39-s + 1.87·41-s + 1.21·43-s − 0.149·45-s + 1.16·47-s − 3/7·49-s − 0.824·53-s + 0.539·55-s + 0.132·57-s − 0.781·59-s + ⋯ |
Λ(s)=(=(2280s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(2280s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.638318892 |
L(21) |
≈ |
1.638318892 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 5 | 1+T |
| 19 | 1−T |
good | 7 | 1+2T+pT2 |
| 11 | 1+4T+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1+pT2 |
| 23 | 1−8T+pT2 |
| 29 | 1+2T+pT2 |
| 31 | 1−10T+pT2 |
| 37 | 1−6T+pT2 |
| 41 | 1−12T+pT2 |
| 43 | 1−8T+pT2 |
| 47 | 1−8T+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1+6T+pT2 |
| 61 | 1−10T+pT2 |
| 67 | 1+4T+pT2 |
| 71 | 1+pT2 |
| 73 | 1+2T+pT2 |
| 79 | 1−10T+pT2 |
| 83 | 1+6T+pT2 |
| 89 | 1+pT2 |
| 97 | 1+2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.147419761271871272354642937619, −8.094892290976825000288656742302, −7.60454808441980285120122662578, −6.87026565439754025500762199807, −5.89915736099352673808280918566, −4.92416488810909051901283951074, −4.14212641887134945016435736327, −2.92936483576798041344267272221, −2.61725081168138791694652154838, −0.792182304489764548174574988163,
0.792182304489764548174574988163, 2.61725081168138791694652154838, 2.92936483576798041344267272221, 4.14212641887134945016435736327, 4.92416488810909051901283951074, 5.89915736099352673808280918566, 6.87026565439754025500762199807, 7.60454808441980285120122662578, 8.094892290976825000288656742302, 9.147419761271871272354642937619