L(s) = 1 | + (0.198 + 0.435i)2-s + (−2.11 + 0.620i)3-s + (1.15 − 1.33i)4-s + (−2.18 − 1.40i)5-s + (−0.691 − 0.797i)6-s + (0.483 + 3.36i)7-s + (1.73 + 0.508i)8-s + (1.56 − 1.00i)9-s + (0.176 − 1.22i)10-s + (0.0950 − 0.208i)11-s + (−1.62 + 3.54i)12-s + (0.435 − 3.02i)13-s + (−1.36 + 0.879i)14-s + (5.48 + 1.61i)15-s + (−0.380 − 2.64i)16-s + (1.26 + 1.45i)17-s + ⋯ |
L(s) = 1 | + (0.140 + 0.308i)2-s + (−1.22 + 0.358i)3-s + (0.579 − 0.669i)4-s + (−0.976 − 0.627i)5-s + (−0.282 − 0.325i)6-s + (0.182 + 1.27i)7-s + (0.612 + 0.179i)8-s + (0.520 − 0.334i)9-s + (0.0559 − 0.388i)10-s + (0.0286 − 0.0627i)11-s + (−0.467 + 1.02i)12-s + (0.120 − 0.839i)13-s + (−0.365 + 0.235i)14-s + (1.41 + 0.415i)15-s + (−0.0952 − 0.662i)16-s + (0.306 + 0.353i)17-s + ⋯ |
Λ(s)=(=(23s/2ΓC(s)L(s)(0.960−0.278i)Λ(2−s)
Λ(s)=(=(23s/2ΓC(s+1/2)L(s)(0.960−0.278i)Λ(1−s)
Degree: |
2 |
Conductor: |
23
|
Sign: |
0.960−0.278i
|
Analytic conductor: |
0.183655 |
Root analytic conductor: |
0.428550 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ23(4,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 23, ( :1/2), 0.960−0.278i)
|
Particular Values
L(1) |
≈ |
0.522645+0.0741564i |
L(21) |
≈ |
0.522645+0.0741564i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 23 | 1+(4.62+1.25i)T |
good | 2 | 1+(−0.198−0.435i)T+(−1.30+1.51i)T2 |
| 3 | 1+(2.11−0.620i)T+(2.52−1.62i)T2 |
| 5 | 1+(2.18+1.40i)T+(2.07+4.54i)T2 |
| 7 | 1+(−0.483−3.36i)T+(−6.71+1.97i)T2 |
| 11 | 1+(−0.0950+0.208i)T+(−7.20−8.31i)T2 |
| 13 | 1+(−0.435+3.02i)T+(−12.4−3.66i)T2 |
| 17 | 1+(−1.26−1.45i)T+(−2.41+16.8i)T2 |
| 19 | 1+(1.26−1.46i)T+(−2.70−18.8i)T2 |
| 29 | 1+(−4.23−4.89i)T+(−4.12+28.7i)T2 |
| 31 | 1+(1.44+0.424i)T+(26.0+16.7i)T2 |
| 37 | 1+(5.67−3.64i)T+(15.3−33.6i)T2 |
| 41 | 1+(−6.78−4.36i)T+(17.0+37.2i)T2 |
| 43 | 1+(2.55−0.749i)T+(36.1−23.2i)T2 |
| 47 | 1+1.43T+47T2 |
| 53 | 1+(1.22+8.49i)T+(−50.8+14.9i)T2 |
| 59 | 1+(0.00878−0.0611i)T+(−56.6−16.6i)T2 |
| 61 | 1+(−0.0426−0.0125i)T+(51.3+32.9i)T2 |
| 67 | 1+(−5.15−11.2i)T+(−43.8+50.6i)T2 |
| 71 | 1+(3.46+7.58i)T+(−46.4+53.6i)T2 |
| 73 | 1+(−0.437+0.505i)T+(−10.3−72.2i)T2 |
| 79 | 1+(−1.70+11.8i)T+(−75.7−22.2i)T2 |
| 83 | 1+(0.303−0.194i)T+(34.4−75.4i)T2 |
| 89 | 1+(−15.4+4.54i)T+(74.8−48.1i)T2 |
| 97 | 1+(0.335+0.215i)T+(40.2+88.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−17.86050679187521477445319340182, −16.34346305871690337678584639273, −15.82622556652173074562931536094, −14.76213691508780106542578001162, −12.37142508458322437423924466078, −11.60364304372605875531843957745, −10.37030895406267864126384531529, −8.245259285711677999907873202935, −6.09176650110013088563725642668, −5.02391178006753994249697831566,
4.02744855059760795335469833124, 6.71610085194056859926149333211, 7.62411840852442737605105286610, 10.66371080744931333057356507937, 11.43344959459257525705111511349, 12.27355814871927646413260670117, 13.91452657831320887142581353274, 15.80233741763860238681677209725, 16.77549438280340543921186921433, 17.67124850837853196870804823785