L(s) = 1 | + (0.198 + 0.435i)2-s + (−2.11 + 0.620i)3-s + (1.15 − 1.33i)4-s + (−2.18 − 1.40i)5-s + (−0.691 − 0.797i)6-s + (0.483 + 3.36i)7-s + (1.73 + 0.508i)8-s + (1.56 − 1.00i)9-s + (0.176 − 1.22i)10-s + (0.0950 − 0.208i)11-s + (−1.62 + 3.54i)12-s + (0.435 − 3.02i)13-s + (−1.36 + 0.879i)14-s + (5.48 + 1.61i)15-s + (−0.380 − 2.64i)16-s + (1.26 + 1.45i)17-s + ⋯ |
L(s) = 1 | + (0.140 + 0.308i)2-s + (−1.22 + 0.358i)3-s + (0.579 − 0.669i)4-s + (−0.976 − 0.627i)5-s + (−0.282 − 0.325i)6-s + (0.182 + 1.27i)7-s + (0.612 + 0.179i)8-s + (0.520 − 0.334i)9-s + (0.0559 − 0.388i)10-s + (0.0286 − 0.0627i)11-s + (−0.467 + 1.02i)12-s + (0.120 − 0.839i)13-s + (−0.365 + 0.235i)14-s + (1.41 + 0.415i)15-s + (−0.0952 − 0.662i)16-s + (0.306 + 0.353i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 23 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.960 - 0.278i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.960 - 0.278i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.522645 + 0.0741564i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.522645 + 0.0741564i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 23 | \( 1 + (4.62 + 1.25i)T \) |
good | 2 | \( 1 + (-0.198 - 0.435i)T + (-1.30 + 1.51i)T^{2} \) |
| 3 | \( 1 + (2.11 - 0.620i)T + (2.52 - 1.62i)T^{2} \) |
| 5 | \( 1 + (2.18 + 1.40i)T + (2.07 + 4.54i)T^{2} \) |
| 7 | \( 1 + (-0.483 - 3.36i)T + (-6.71 + 1.97i)T^{2} \) |
| 11 | \( 1 + (-0.0950 + 0.208i)T + (-7.20 - 8.31i)T^{2} \) |
| 13 | \( 1 + (-0.435 + 3.02i)T + (-12.4 - 3.66i)T^{2} \) |
| 17 | \( 1 + (-1.26 - 1.45i)T + (-2.41 + 16.8i)T^{2} \) |
| 19 | \( 1 + (1.26 - 1.46i)T + (-2.70 - 18.8i)T^{2} \) |
| 29 | \( 1 + (-4.23 - 4.89i)T + (-4.12 + 28.7i)T^{2} \) |
| 31 | \( 1 + (1.44 + 0.424i)T + (26.0 + 16.7i)T^{2} \) |
| 37 | \( 1 + (5.67 - 3.64i)T + (15.3 - 33.6i)T^{2} \) |
| 41 | \( 1 + (-6.78 - 4.36i)T + (17.0 + 37.2i)T^{2} \) |
| 43 | \( 1 + (2.55 - 0.749i)T + (36.1 - 23.2i)T^{2} \) |
| 47 | \( 1 + 1.43T + 47T^{2} \) |
| 53 | \( 1 + (1.22 + 8.49i)T + (-50.8 + 14.9i)T^{2} \) |
| 59 | \( 1 + (0.00878 - 0.0611i)T + (-56.6 - 16.6i)T^{2} \) |
| 61 | \( 1 + (-0.0426 - 0.0125i)T + (51.3 + 32.9i)T^{2} \) |
| 67 | \( 1 + (-5.15 - 11.2i)T + (-43.8 + 50.6i)T^{2} \) |
| 71 | \( 1 + (3.46 + 7.58i)T + (-46.4 + 53.6i)T^{2} \) |
| 73 | \( 1 + (-0.437 + 0.505i)T + (-10.3 - 72.2i)T^{2} \) |
| 79 | \( 1 + (-1.70 + 11.8i)T + (-75.7 - 22.2i)T^{2} \) |
| 83 | \( 1 + (0.303 - 0.194i)T + (34.4 - 75.4i)T^{2} \) |
| 89 | \( 1 + (-15.4 + 4.54i)T + (74.8 - 48.1i)T^{2} \) |
| 97 | \( 1 + (0.335 + 0.215i)T + (40.2 + 88.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.86050679187521477445319340182, −16.34346305871690337678584639273, −15.82622556652173074562931536094, −14.76213691508780106542578001162, −12.37142508458322437423924466078, −11.60364304372605875531843957745, −10.37030895406267864126384531529, −8.245259285711677999907873202935, −6.09176650110013088563725642668, −5.02391178006753994249697831566,
4.02744855059760795335469833124, 6.71610085194056859926149333211, 7.62411840852442737605105286610, 10.66371080744931333057356507937, 11.43344959459257525705111511349, 12.27355814871927646413260670117, 13.91452657831320887142581353274, 15.80233741763860238681677209725, 16.77549438280340543921186921433, 17.67124850837853196870804823785