Properties

Label 2-23-23.4-c1-0-0
Degree $2$
Conductor $23$
Sign $0.960 - 0.278i$
Analytic cond. $0.183655$
Root an. cond. $0.428550$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.198 + 0.435i)2-s + (−2.11 + 0.620i)3-s + (1.15 − 1.33i)4-s + (−2.18 − 1.40i)5-s + (−0.691 − 0.797i)6-s + (0.483 + 3.36i)7-s + (1.73 + 0.508i)8-s + (1.56 − 1.00i)9-s + (0.176 − 1.22i)10-s + (0.0950 − 0.208i)11-s + (−1.62 + 3.54i)12-s + (0.435 − 3.02i)13-s + (−1.36 + 0.879i)14-s + (5.48 + 1.61i)15-s + (−0.380 − 2.64i)16-s + (1.26 + 1.45i)17-s + ⋯
L(s)  = 1  + (0.140 + 0.308i)2-s + (−1.22 + 0.358i)3-s + (0.579 − 0.669i)4-s + (−0.976 − 0.627i)5-s + (−0.282 − 0.325i)6-s + (0.182 + 1.27i)7-s + (0.612 + 0.179i)8-s + (0.520 − 0.334i)9-s + (0.0559 − 0.388i)10-s + (0.0286 − 0.0627i)11-s + (−0.467 + 1.02i)12-s + (0.120 − 0.839i)13-s + (−0.365 + 0.235i)14-s + (1.41 + 0.415i)15-s + (−0.0952 − 0.662i)16-s + (0.306 + 0.353i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 23 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.960 - 0.278i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.960 - 0.278i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(23\)
Sign: $0.960 - 0.278i$
Analytic conductor: \(0.183655\)
Root analytic conductor: \(0.428550\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{23} (4, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 23,\ (\ :1/2),\ 0.960 - 0.278i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.522645 + 0.0741564i\)
\(L(\frac12)\) \(\approx\) \(0.522645 + 0.0741564i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 + (4.62 + 1.25i)T \)
good2 \( 1 + (-0.198 - 0.435i)T + (-1.30 + 1.51i)T^{2} \)
3 \( 1 + (2.11 - 0.620i)T + (2.52 - 1.62i)T^{2} \)
5 \( 1 + (2.18 + 1.40i)T + (2.07 + 4.54i)T^{2} \)
7 \( 1 + (-0.483 - 3.36i)T + (-6.71 + 1.97i)T^{2} \)
11 \( 1 + (-0.0950 + 0.208i)T + (-7.20 - 8.31i)T^{2} \)
13 \( 1 + (-0.435 + 3.02i)T + (-12.4 - 3.66i)T^{2} \)
17 \( 1 + (-1.26 - 1.45i)T + (-2.41 + 16.8i)T^{2} \)
19 \( 1 + (1.26 - 1.46i)T + (-2.70 - 18.8i)T^{2} \)
29 \( 1 + (-4.23 - 4.89i)T + (-4.12 + 28.7i)T^{2} \)
31 \( 1 + (1.44 + 0.424i)T + (26.0 + 16.7i)T^{2} \)
37 \( 1 + (5.67 - 3.64i)T + (15.3 - 33.6i)T^{2} \)
41 \( 1 + (-6.78 - 4.36i)T + (17.0 + 37.2i)T^{2} \)
43 \( 1 + (2.55 - 0.749i)T + (36.1 - 23.2i)T^{2} \)
47 \( 1 + 1.43T + 47T^{2} \)
53 \( 1 + (1.22 + 8.49i)T + (-50.8 + 14.9i)T^{2} \)
59 \( 1 + (0.00878 - 0.0611i)T + (-56.6 - 16.6i)T^{2} \)
61 \( 1 + (-0.0426 - 0.0125i)T + (51.3 + 32.9i)T^{2} \)
67 \( 1 + (-5.15 - 11.2i)T + (-43.8 + 50.6i)T^{2} \)
71 \( 1 + (3.46 + 7.58i)T + (-46.4 + 53.6i)T^{2} \)
73 \( 1 + (-0.437 + 0.505i)T + (-10.3 - 72.2i)T^{2} \)
79 \( 1 + (-1.70 + 11.8i)T + (-75.7 - 22.2i)T^{2} \)
83 \( 1 + (0.303 - 0.194i)T + (34.4 - 75.4i)T^{2} \)
89 \( 1 + (-15.4 + 4.54i)T + (74.8 - 48.1i)T^{2} \)
97 \( 1 + (0.335 + 0.215i)T + (40.2 + 88.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.86050679187521477445319340182, −16.34346305871690337678584639273, −15.82622556652173074562931536094, −14.76213691508780106542578001162, −12.37142508458322437423924466078, −11.60364304372605875531843957745, −10.37030895406267864126384531529, −8.245259285711677999907873202935, −6.09176650110013088563725642668, −5.02391178006753994249697831566, 4.02744855059760795335469833124, 6.71610085194056859926149333211, 7.62411840852442737605105286610, 10.66371080744931333057356507937, 11.43344959459257525705111511349, 12.27355814871927646413260670117, 13.91452657831320887142581353274, 15.80233741763860238681677209725, 16.77549438280340543921186921433, 17.67124850837853196870804823785

Graph of the $Z$-function along the critical line