L(s) = 1 | − 7·2-s − 38·3-s − 15·4-s + 266·6-s + 553·8-s + 715·9-s + 570·12-s + 1.08e3·13-s − 2.91e3·16-s − 5.00e3·18-s − 1.21e4·23-s − 2.10e4·24-s + 1.56e4·25-s − 7.57e3·26-s + 532·27-s + 3.07e4·29-s + 5.87e4·31-s − 1.50e4·32-s − 1.07e4·36-s − 4.11e4·39-s + 4.36e4·41-s + 8.51e4·46-s − 2.05e5·47-s + 1.10e5·48-s + 1.17e5·49-s − 1.09e5·50-s − 1.62e4·52-s + ⋯ |
L(s) = 1 | − 7/8·2-s − 1.40·3-s − 0.234·4-s + 1.23·6-s + 1.08·8-s + 0.980·9-s + 0.329·12-s + 0.492·13-s − 0.710·16-s − 0.858·18-s − 23-s − 1.52·24-s + 25-s − 0.430·26-s + 0.0270·27-s + 1.26·29-s + 1.97·31-s − 0.458·32-s − 0.229·36-s − 0.693·39-s + 0.633·41-s + 7/8·46-s − 1.97·47-s + 1.00·48-s + 49-s − 7/8·50-s − 0.115·52-s + ⋯ |
Λ(s)=(=(23s/2ΓC(s)L(s)Λ(7−s)
Λ(s)=(=(23s/2ΓC(s+3)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
23
|
Sign: |
1
|
Analytic conductor: |
5.29124 |
Root analytic conductor: |
2.30027 |
Motivic weight: |
6 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ23(22,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 23, ( :3), 1)
|
Particular Values
L(27) |
≈ |
0.4880303151 |
L(21) |
≈ |
0.4880303151 |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 23 | 1+p3T |
good | 2 | 1+7T+p6T2 |
| 3 | 1+38T+p6T2 |
| 5 | (1−p3T)(1+p3T) |
| 7 | (1−p3T)(1+p3T) |
| 11 | (1−p3T)(1+p3T) |
| 13 | 1−1082T+p6T2 |
| 17 | (1−p3T)(1+p3T) |
| 19 | (1−p3T)(1+p3T) |
| 29 | 1−30746T+p6T2 |
| 31 | 1−58754T+p6T2 |
| 37 | (1−p3T)(1+p3T) |
| 41 | 1−43634T+p6T2 |
| 43 | (1−p3T)(1+p3T) |
| 47 | 1+205342T+p6T2 |
| 53 | (1−p3T)(1+p3T) |
| 59 | 1+253942T+p6T2 |
| 61 | (1−p3T)(1+p3T) |
| 67 | (1−p3T)(1+p3T) |
| 71 | 1−667154T+p6T2 |
| 73 | 1−725042T+p6T2 |
| 79 | (1−p3T)(1+p3T) |
| 83 | (1−p3T)(1+p3T) |
| 89 | (1−p3T)(1+p3T) |
| 97 | (1−p3T)(1+p3T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.85679340562610487422197990914, −15.89194571733631421976646400420, −13.85616011152672178118138225480, −12.31744179707429698461728489589, −10.99805223113660726529032535557, −9.963420897852036337490473396685, −8.290094947978572616300124743303, −6.44575988406637144103056549585, −4.74761605237732684069464542721, −0.815114495854622862890383705685,
0.815114495854622862890383705685, 4.74761605237732684069464542721, 6.44575988406637144103056549585, 8.290094947978572616300124743303, 9.963420897852036337490473396685, 10.99805223113660726529032535557, 12.31744179707429698461728489589, 13.85616011152672178118138225480, 15.89194571733631421976646400420, 16.85679340562610487422197990914